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Summary. The pressure distribution of oil fi lm at the smallest height of the gap occurring between the valve 
plate and cylinder block is given as a function of geometrical and working parameters of the axial piston pump. 
An analysis was performed using the fi nite element method implemented in a computer program developed by 
the author of the present paper.

Key words: pressure distribution, variable height gap, axial piston pump, computer program.

INTRODUCTION

Among many cooperating or adjacent surfaces of components in hydraulic machines there 
exist oil fi lled gaps. Phenomena occurring in these gaps are considered among the most important 
ones for the system behaviour. It follows not only from a substantial impact exerted by these 
phenomena on the energy balance in the hydraulic system, but also from their variety and mutual 
dependencies [Osiecki 1998]. 

One of the kinematical pairs affecting the effi ciency of an axial piston pump is the valve plate 
– cylinder block system. When the pump is operating a gap fi lled with oil of small height appears 
between the rotating cylinder block with the set of cylinders and the valve plate. The gap can be 
either parallel [Stryczek 1995], which is the most desirable case, or of variable height [Jang 1997], 
which is a result of the imbalance between the hydrostatic forces pressing the cylinder block and 
valve plate towards each other and forces pressing them apart from each other. The present paper 
deals with the latter case, i.e. the gap of variable height. We shall examine how the pressure distri-
bution in the oil fi lm in the gap where its height is the smallest varies according to the leveling of 
the cylinder block and exploitation parameters of the pump. 
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ANALYSIS OF HEIGHT OF WEDGE GAP BETWEEN THE VALVE PLATE 
AND CYLINDER BLOCK

The general case of cylinder block placement with respect to the valve plate in the pump is 
depicted in Fig. 1. Individual cylinder block settings with respect to the valve plate, depicted in Fig. 
2, can be considered theoretically.

For a further analysis it is necessary to determine the theoretical distribution of heights of 
wedge gap between the valve plate and cylinder block [Zloto 1997]. The lower surface of the valve 
plate and the upper surface of cylinder block are fl at. In the case, when there are no displacements, 
these surfaces adhere and their axes are the same (Fig. 2d). The valve plate does not move. The 
cylinder block rotates along its axis. 

In the initial position for the general case the cylinder block and valve plate surfaces are 
placed with respect to each other like in the case depicted in Figure 1. The coordinate systems x 
and x1 are assigned to appropriate surfaces. The directional versor (its components) of the cylinder 
block surface in the x1 coordinate system may be written as:
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Fig. 1. A general case of cylinder block placement with respect to the valve plate
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Fig. 2. Specifi c cases of cylinder block placement with respect to the valve plate: a) b = 0; b) b = 0, h1 = 0; 
c) ε = 0, b = 0; d) ε = 0, b = 0, h1 = 0
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In order to write the equation for this plane in the x coordinate system related to valve plate 
it is necessary to write this versor in that coordinate system. The distance of cylinder block plane 
from the origin of x coordinate system is equal to:

 ( )0 1sin cosh R b hε ε= ± + . (2)

An additional coordinate system x2 was introduced, which at the initial time instant δ = 0 is 
equivalent to the x coordinate system and is related to cylinder block. This coordinate system rotates 
with respect to the x system along with the common rotation axis z = z2 at the angle δ.

In order to write down the versor components of cylinder block rotation (directional cosines) 
in the valve plate system it is not necessary to take into account the mutual displacement of the 
origins of the introduced coordinate systems.

Therefore it is possible to make a transformation from the x1 coordinate system to the x2 
coordinate system (Fig. 3a) using the rotation matrix (in order to give a formulation for this matrix 
the origins of the coordinate systems were placed at a single point):
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and for transformation into the x coordinate system (Fig. 3b):
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Fig. 3. Transformations between the coordinates systems a) related to cylinder block, b) related to valve plate

The directional versor of the cylinder block plane in the x coordinated system related to valve 
plate can be written as:

 [ ][ ] [ ]
_ _

1
3, 2, cos sin , sin sin , cos Tn n= − − = . (5)

Therefore the equation for cylinder block plane in the x coordinate system may be written as:

 0cos sin sin sin cos 0x y h h+ + − = . (6)

The height of gap between the planes valve plate – cylinder block measured in the direction 
of z axis may be determined from the equation:
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 ( ) 1cos sinh x tg y tg R b tg h= − ⋅ − ⋅ + + + . (7)

Because the valve plate plane is limited with a circle, so it is useful to give the coordinates 
of points belonging to this plane in the form:

 sinx r φ= , cosy r φ= . (8)

The gap height may vary from the minimal to maximal value and is considered in dependence 
on spherical coordinates r and φ, cylinder block bias angle ε, tangency angle δ for minimal gap 
height h1 and cylinder block radius R. The quantity b as radius beat does not occur in practice. 

From literature and experimental studies [Zloto 2007] it follows, that the tangency point 
between the cylinder block and valve plate occurs below the coordinate x, what confi rms the oc-
curence of the load forces in this quarter of trajectories.

APPROXIMATE SOLUTION OF THE REYNOLDS EQUATION 
USING THE FINITE ELEMENT METHOD

The operation of the valve plate-cylinder block system resembles the operation of a hydro-
static axial bearing [Ivantysyn and Ivantysynova 2001]. 

According to the hydrodynamic lubrication theory, distribution of pressure in the frontal gap 
of a hydrostatic bearing can be described by the Reynolds equation [Pasynkov and Posvianski 1993]:

 ( ) ( )
3 3

6 6 12  h p h p uh vh w
x x y y x y

ρ ρ
μ μ

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂
+ = + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

, (9)

where: p is the pressure in the bearing gap, h is the gap height, ρ is the lubricating oil density, 
μ is the dynamic lubricant viscosity, and u, v, w denote the components of peripheral velocity by 
the given angular velocity ω and the radius vector r of the cylinder block with respect to the axes 
x,y,z in the Cartesian coordinate system.

 
Fig. 4. Main dimensions of the computational domain of the valve plate and part of the fi nite element mesh

The Reynolds equation (9) holds under the following assumptions:
- the fl ow in the frontal gap is laminar,
- fl uid friction takes place between the cooperating surfaces,
- the lubricant is an incompressible Newtonian fl uid,
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- the pressure is constant in the direction orthogonal to the surface,
- the cooperating surfaces are rigid.
Analytical solution of equation (9) is quite complicated, particularly for surfaces of more 

complex shape. Therefore, the equation was solved numerically using the fi nite element method. In 
this method geometric domain Ω under consideration is divided into fi nite elements, that is disjoint 
geometric fi gures of simple shape, such as triangles or quadrilaterals (Fig. 4).

These simple fi gures constitute a mesh where their vertices are the mesh nodes. Approximate 
solution of equation (9) is represented as a linear combination of some functions Nj and values of 
the pressure pj in mesh nodes:

 ( )
1

( , ) ,
L

j j
j

p x y N x y p
=

=∑ , (10)

where: L denotes the number of nodes in the mesh. The nodal values pj are the unknowns 
of the problem and after they have been determined it is possible to calculate the pressure in any 
point of the domain.

The functions Nj, called basis or shape functions, are used for interpolation of the pressure 
within a fi nite element. The shape function Nj, associated with the node of the index j, has the property:
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i.e. it equals one in this node, whereas it is equal to zero in the other nodes. Given that an 
element under consideration has vertices in nodes i, j, m, the shape function associated with the 
node i equals [12]:

 ( ),
2

i i i
i

a b x c yN x y
A

+ +
= , (12)

where: ,   ,   i j m m j i j m i m ja x y x y b y y c x x= − = − = − , and A denotes the element surface area. 
The other shape functions can also be calculated from formula (12) after cyclic permutation of the 
indices, e.g. to j, m, i.

Approximate solution obtained numerically usually fails to satisfy the partial differential 
equation (9). The magnitude of this discrepancy can be measured by the residual, which is the 
result of the substitution of the approximate solution for the exact one. For the Reynolds equation 
the residual is given as:
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. (13)

The Galerkin weighted residual [Zienkiewicz and Morgan1983] method was applied in this 
work to derive fi nite element equations. It is required that:

 0     for  1,2,...,irN dxdy i L
Ω

= =∫ , (14)

i.e. that the residual be orthogonal to each shape functions defi ned in the mesh.
Substituting the residual (13) in the equation (14), integration by parts and some reordering 

results in the following system of equations:
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Derivatives of the approximate solution with respect to spatial coordinates appear in equa-
tion (15). They can be represented using derivatives of the shape functions and the nodal pressure 
values as:
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For triangular elements used in this paper derivatives of the shape functions are respectively 
equal to:
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Substituting the derivatives from (16) into (17) gives the following system of algebraic equa-
tions:
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This is a system of L equations with L unknowns pj, which can be represented in a more 
compact manner in matrix-vector notation as:

 Ap = b, (19)

where:
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This system is global. Analogous local systems of equations can be written for all fi nite ele-
ments, with the only difference lying in summing in the range i = 1,2,3 and in integration over the 
element area of only those shape functions that are associated with its nodes.

COMPUTER IMPLEMENTATION OF THE FINITE ELEMENT METHOD 
AND SIMULATION RESULTS

The fi nite element method for the Reynolds equation was implemented in a computer program. 
It was written in the C++ programming language based upon an existing software library of reusable 
components facilitating programming of the fi nite element method [Nagorka and Sczygiol 2004].

Finite element computations usually consist of:
- reading the mesh and problem data from fi les,
- building the system of equations (19) as the result of assembling contributions from 

individual elements,
- imposition of boundary conditions,
- solution of the resulting equation system,
- saving the results to fi les, visualization, etc.
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Coeffi cients of the matrix and the right-hand side vector in equation system (19) involve inte-
grals of shape functions or their derivatives, oil data, gap height and velocity components. The de-
rivatives in (20) can be calculated from formula (17) and are constant within an element. However, 
variation of the height is non-polynomial and analytical evaluation of the integral (20) is trouble-
some. Similarly, derivatives of velocity and height in (21) make the integral diffi cult to evaluate. 
Therefore, numerical integration was used to calculate matrix and vector elements in system (19). 
Gaussian quadrature formulas were applied with points and weights taken from [Cools 2003].

The coeffi cient matrix in the system of equations (19) is sparse. Each matrix row corresponds 
to a single mesh node, and the number of non-zero coeffi cients in the row depends on the number 
of neighbor nodes connected with the given node by element edges, which is small. Keeping all 
the square matrix in memory would be waste of resources. In the computer program special data 
structures were applied to store only non-zero terms, thereby greatly reducing the memory con-
sumption.

Solution of the system of algebraic equation (19) is by far the most time-consuming part of 
computations. Generally, the equations are nonlinear. However, in this work oil properties were 
assumed to be independent of pressure, hence system (19) is linear. To solve such a system one of 
the iterative solution methods, namely the conjugate gradient method with the Jacobi preconditioner 
[Barret et al. 1994] was applied. The advantages of this method are much better effi ciency when 
compared to classical direct methods, such as Gaussian elimination on dense or sparse matrices, 
and feasibility of effi cient use of sparse matrix data structures.

The developed computer program accepts input data and saves the results in fi le formats 
compliant with a software package NuscaS [Sczygiol et al. 2002], used for mesh generation, pre-
processing, visualization, etc.

The accuracy of the fi nite element solution depends on mesh density: the smaller the elements, 
the better accuracy. This is particularly important in place where rapid variation of pressure occurs, 
close to the site of the smallest bearing gap height.

An example of the adapted mesh covering the domain of a bearing is presented in Figs 5-7. 
The mesh is the result of adaptive refi nement done during solution of a problem with the pressure 
peak at φ = 135º. Subsequent fi gures show greater and greater zoom on the mesh region near the 
peak. Density grading towards the external boundary of the bearing was achieved automatically 
after six iterations of adaptive refi nement.

(a)                                                                       (b) 

 

Fig. 5. Local increase in grid density in the area of the „peak” pressure: 
(a) outlook of the pressure port, (b) zoom of graded mesh
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a)  (b) 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Local increase in grid density in the area of substantial variations of pressure values: 
successive zooms (a) and (b)

(a)                                                                               (b) 

 

Fig. 7. Local increase in grid density in specifi c areas of pressure variations: successive zooms (a) and (b)

Simulations were performed on meshes from a sequence with increasing element density until 
convergence was reached, i.e. until the result on the two consecutive meshes were similar enough. 
Final computations were done on the densest mesh including 80194 nodes and 154336 triangular 
elements with linear interpolation of the pressure.

Distribution of pressure in the oil fi lm inside the variable-height gap on the valve plate was 
analyzed using the fi nite element method, the developed computer program and geometric and ex-
ploitation data of the valve plate-cylinder block system in an axial piston pump under the assumption 
of calculational model with rotating plate imitating the operating cylinder block. 

The following input parameters were assumed in the developed computational model (Fig. 4):
- in the pressure port the pressure pt = 32 MPa,
- in the suction port the pressure ps = 0 MPa,
- outside and inside the valve plate the pressure po = 0 MPa, 
- angular velocity of the cylinder block ω = 157 rad/s
- dynamic viscosity of the oil μ = 0.0252 Pas,
- the angle of the smallest height of the gap with respect to the axis x δ = 0.785 rad, 
- the angle of the cylinder block with respect of the valve plate ε = 0.000523 rad,
- minimal gap height hmin = 3*10-7 m,
- characteristic radii of the valve plate are r1 = 0.0284 m, r2 = 0.0304 m, r3 = 0.0356 m, and 

r4 = 0.0376 m.
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In the model boundary conditions it was assumed, that cavitation prcesses begin with under-
pressure approximately equal to – 0.05 MPa [Osiecki 1998].

In Fig. 8 the calculated distribution of oil fi lm pressure on the valve plate is presented. Pres-
sure variation in the vicinity of the lowest bearing gap height is of greatest interest. In the confusor 
part of the gap (where the height decreases) an overpressure peak is visible, whereas in the diffusor 
part a specifi c value of underpressure limited with cavitation phenomenon occurs. Peripheral section 
at the radius 0.03715 m with the greatest pressure peaks is depicted in Fig. 9.

Fig. 8. Oil fi lm pressure distribution on the valve plate
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Fig. 9. Pressure waveforms of the oil fi lm in the vicinity of the smallest height gap of the circumferential 
section at the radius r = 0.03715 m depending on the cylinder block revolution

The calculation results were confi rmed using commercial software FLUENT. The confi rma-
tion of occurrence of overpressure “peak” in the kinematical pair hydrostatic slipper- swash plate in 
the neighbourhood of the minimum gap height is depicted in Figure 10 [Lasaar and Ivantysynova 
2002].
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Fig. 10. Pressure fi eld under slipper [Lasaar and Ivantysynova 2002]

In literature [Kunze and Brunner 1996] attention is paid to the occurence of cavitation phe-
nomenon in axial piston pumps. In Figure 11 the damages of the outer parts of cylinder block 
cylinder outlets due to cavitation phenomenon.

 

Fig. 11. Damages of the outer parts of cylinder block cylinder outlets [Kunze and Brunner 1996]
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Fig. 12. Values of maximum pressure of oil fi lm depending on the cylinder block inclination angle ε
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It is supposed, that the cause of the cavitation phenomenon is the occurence of underpressure 
in the diffusor gap in the neighbourhood of the minimum gap height. 

In the analysis of the pressure distribution the infl uence of the geometrical and exploitation 
parameters of the cylinder block-valve plate system on the pressure increase in the smallest gap 
height area was taken into consideration.

In Fig. 12 the effect of the cylinder block inclination with respect to the valve plate is shown. 
As the inclination angle increases, the peak values of the maximum pressure decrease. The greatest 
values occur for small angles ε. 

In Fig. 13 the infl uence of exploitation parameters on the maximum pressure values is de-
picted. 

a) b) 

 
 
 
 
 
 
 
 
 

0 50 100 150 200 250 300 350
0,00E+000

2,00E+007

4,00E+007

6,00E+007

8,00E+007

1,00E+008

1,20E+008

1,40E+008

p 
[P

a]

 [rad/s]
0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08

0,00E+000

4,00E+007

8,00E+007

1,20E+008

1,60E+008

2,00E+008

p 
[P

a]

 [Pas]

Fig. 13. Values of maximum pressure of oil fi lm depending: a) on the cylinder block angular velocity ω, 
b) on the dynamic viscosity coeffi cient μ of oil

An increase in the angular velocity and in the dynamic viscosity coeffi cient causes a linear 
increase in the values of the maximum pressure of the oil fi lm. As the minimum gap h1 increases, 
the values of overpressure “peaks” decrease, what is depicted in Figure 14.
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Fig. 14. The dependence of maximum pressure pmax on minimum gap height h1
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CONCLUSIONS

The present investigations lead to the following conclusions: 
1. The fi nite element method combined with numerical methods enables the solution of the 

Reynolds equation in order to determine the oil fi lm pressure in variable height gaps between co-
operating elements. 

2. The distribution of the maximum pressures of the oil fi lm in the area of the smallest 
height gap are dependent on the selected geometrical and exploitation parameters of the pump. As 
the inclination angle of the cylinder block decreases and the angular velocity and the dynamic oil 
viscosity coeffi cient increase, the values of the maximum pressure increase. On the other hand, the 
values of underpressure are limited with cavitation phenomenon, which occurs already at under-
pressure – 0.05 Mpa.
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MODELOWANIE ROZKŁADÓW CIŚNIENIA W FILMIE OLEJOWYM W SZCZE-
LINIE KLINOWEJ ROZRZĄDU POMPY WIELOTŁOCZKOWEJ

Streszczenie. W pracy przedstawiono rozkłady ciśnienia fi lmu olejowego w otoczeniu najmniejszej wysokości 
szczeliny klinowej występującej w zespole rozrządu tarczowego w zależności od parametrów geometryczno 
- eksploatacyjnych pompy wielotłoczkowej osiowej. Do analizy wykorzystano metodę elementów skończonych 
opracowując własny program komputerowy.

Słowa kluczowe: rozkłady ciśnienia, szczelina klinowa, pompa wielotłoczkowa, program komputerowy.


