TEKA Kom. Mot. Energ. Rolr=-OL PAN, 2007, 7, 293-301

ANALYSIS OF THE PRESSURE DISTRIBUTION OF OIL FILM
IN THE VARIABLE HEIGHT GAP BETWEEN THE VALVE PLATE
AND CYLINDER BLOCK IN THE AXIAL PISTON PUMP

Tadeusz Ztoto*, Arkadiusz Nagoérka **

Onstitute of Machine Technology and Production Aunédion,
Armii Krajowej Av. 21, 42-200 Cgtochowa, Poland, e-mail:zloto@itm.pcz.czest.pl
[Mnstitute of Computer and Information Sciences
Czestochowa University of Technology
Dabrowskiego Str. 73, 42-200 €tochowa, Poland, e-mail: arkadiusz.nagorka@idscgest.pl

Summary. The pressure distribution of oil film at the shaat height of the gap occurring between
the valve plate and cylinder block is presented asriable depending on the geometrical and
exploitation parameters of the axial piston pumpe TBnalysis was performed using the finite
element method implemented in a computer prograweldped by the authors of the present
paper.
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INTRODUCTION

One of the kinematic pairs affecting the efficierafyan axial piston pump is the
valve plate — cylinder block system. When the pusnpperating a gap filled with oil of
small height appears between the rotating cylibdterk with the set of cylinders and the
valve plate [Pasynkov 1976]. The gap can be eflaeallel [Stryczek 1995], which is
the most desirable case, or of variable heightyjile®s 1965], which results from the
imbalance between the hydrostatic forces presdiagcylinder block and valve plate
towards each other and forces pressing them apart €ach other. The present paper
deals with the latter case, i.e. the gap of vagidigight. We shall examine how the pres-
sure distribution in the oil film in the gap whate height is the smallest varies accord-
ing to the leveling of the cylinder block and extdtion parameters of the pump.

APPROXIMATE SOLUTION OF THE REYNOLDS EQUATION
USING THE FINITE ELEMENT METHOD

The operation of the valve plate-cylinder block teys resembles the operation
of a hydrostatic axial bearing [Ivantysyn and lyaynova 2001].
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According to the hydrodynamic lubrication theorystdbution of pressure in the
frontal gap of a@ydrostatic bearing can be described by the Regredghation [Yampol-
skiy and Ablamskiy 1975, Pasynkov and PosvianskR§3l:
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where:

p — the pressure in the bearing gap,

h — the gap heighp, is the lubricating oil density,

1 — the dynamic lubricant viscosity,

u, v, w— denote the components of peripheral velocityhieygiven angular veloc-

ity ® and the radius vectorof the cylinder block with respect to the axey, z

in the Cartesian coordinate system.

The Reynolds equation (1) holds under the follovasgumptions:
— the flow in the frontal gap is laminar,

— fluid friction takes place between the cooperatuogfaces,

— the lubricant is an incompressible Newtonian fluid,

— the pressure is constant in the direction orthobanthe surface,
— the cooperating surfaces are rigid.

Analytical solution of equation (1) is quite congalied, particularly for surfaces of
more complex shape. Therefore, the equation wasdahumerically using the finite
element method. In this method geometric donGaimnder consideration is divided into
finite elements, that is disjoint geometric figurefssimple shape, such as triangles or
quadrilaterals (Fig. 1).

Fig. 1. Main dimensions of the computational don@ithe valve plate
and part of the finite element mesh
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These simple figures constitute a mesh where tegitices are the mesh nodes.
Approximate solution of equation (1) is represenésda linear combination of some

functions Nj and values of the pressufe, in mesh nodes

L
P(xy) =N, (xY)p, )@
where:
L —the number of nodes in the mesh,
p, — the unknowns of the problem and after they haenldetermined it is pos-

sible to calculate the pressure in any point ofdbmain,

N, —, called basis or shape functions, are usedferpolation of the pressure

within a finite element.

The shape functioN , associated with the node of the indgx has the property

(1, j=k
Nj(xk 'ykj_{o, ]ik} (3)

i.e. it equals one in this node, whereas it is tuaero in the other nodes. For the trian-
gular element with linear interpolation, used iis tork, plots of shape functions are
presented in Fig. 2.
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Fig. 2. Plots of nodal shape functions in a tridagfinite elemét

Given that an element under consideration hascesriin noded, j,m, the shape
function associated with the nodleequals [Zienkiewicz and Taylor 2000]

. +h :
N (xy)= 22 @

where:
& =X Y ~XYs B =Y 7Y G =X X,
A - the element surface area.

The other shape functions can also be calculated formula (4) after cyclic per-
mutation of the indices, e.g. thm,i .
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Approximate solution obtained numerically usuablyid to satisfy the partial differ-
ential equation (1). The magnitude of this discrelyacan be measured by the residual,
which is the result of the substitution of the apgmate solution for the exact one. For
the Reynolds equation the residual is given as

6 0 d(hpap) 0 (h’podp
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The Galerkin weighted residual [Zienkiewicz and Bem 1983] method was ap-
plied in this work to derive finite element equaso It is required that

_[rNidxdy=O for i =12,....L (6)
Q

i.e. that the residual be orthogonal to each shapetions defined in the mesh.
Substituting the residual (5) in the equation (@egration by parts and some reor-
dering results in the following system of equations

h®o( dp ON ap oN, 0 0
— = dxd N, h)+6—(ovh)+120w [dxdy, i=12,...L (7
Q#[M 229N kaxay=[ 6.2 (o) 6. vt + 120 ey ™
Derivatives of the approximate solution with redpgecspatial coordinates appear in
equation (7). They can be represented using demsbf the shape functions and the
nodal pressure values as

op _ 0N, op ZN oN;
= —0Dp., —_= —D. 8
ox 45 0x P oy 4= oy P ®

For triangular elements used in this paper dexeatof the shape functions are re-
spectively equal to
ON. b ON. c
- =_" , _ L =_1 (9)
ox 2A dy 2A

Substituting the derivatives from (8) into (9) givthe following system of alge-
braic equations

(ON oN, , N, 9N, jd dy=
(10)

0X ax ay oy
(6— ouh +eai(pvh +12,aNdedy, i=12,..L
y
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This is a system of. equations withL unknowns p, , which can be represented in
a more compact manner in matrix-vector notation as

Ap=b (11)
where:
so(N. aN  oN
qujhp ON, ON, O, 0N, oy, i, j =12, (12)
. M Ox OX ay ay
= j ( (ouh +eai(mh)+1zmjdxdy, i=12,..L (13)
y
Q

This system is global. Analogous local systemsafations can be written for all
finite elements, with the only difference lying $snmming in the rangé=123 and in
integration over the element area of only thosgeHanctions that are associated with
its nodes.

COMPUTER IMPLEMENTATION OF THE FINITE ELEMENT METHO

The finite element method for the Reynolds equati@s implemented in a com-
puter program. It was written in the C++ programgnianguage based upon an existing
software library of reusable components facilitgtijrogramming of the finite element
method [Nagorka and Sczygiol 2004].

Finite element computations usually consist of

— reading the mesh and problem data from files,

— building the system of equations (11) as the resfuissembling contributions
from individual elements,

— imposition of boundary conditions,

— solution of the resulting equation system,

— saving the results to files, visualization, etc.

Coefficients of the matrix and the right-hand sietor in equation system (11) in-
volve integrals of shape functions or their deiived, material data, gap height and
velocity components. The derivatives in (12) carcaleulated from formula (9) and are

constant within an element. However, variationta heighth is non-polynomial and
analytical evaluation of the integral (12) is treagome. Similarly, derivatives of veloc-
ity and height in (13) make the integral diffictdt evaluate. Therefore, numerical inte-
gration was used to calculate matrix and vectamelds in system (11). Gaussian quad-
rature formulas were applied with points and weighken from [Cools 2003].

The coefficient matrix in the system of equatioh&)(is sparse. Each matrix row
corresponds to a single mesh node, and the nunfibernezero coefficients in the row
depends on the number of neighbor nodes connedtédtive given node by element
edges, which is small. Keeping all the square matrimemory would be waste of re-
sources. In the computer program special datatstegwere applied to store only non-
zero terms, thereby greatly reducing the memorggoption.
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Solution of the system of algebraic equation ($1)y far the most time-consuming
part of computations. Generally, the equations rayelinear. However, in this work
material properties were assumed to be indeperafeptessure, hence system (11) is
linear. To solve such a system one of the iteraddlation methods, namely the conju-
gate gradient method with the Jacobi preconditidBarrett et al. 1994] was applied.
The advantages of this method are much more efficiehen compared to classical
direct methods, such as Gaussian elimination osalensparse matrices, and feasibility
of efficient use of sparse matrix data structures.

The developed computer program accepts input dadasaves the results in file
formats compliant with a software package Nuscay&ol et al.2002], used for mesh
generation, preprocessing, visualization, etc.

The accuracy of the finite element solution depemisnesh density: the smaller
the elements, the better accuracy. This is pasibulimportant in place where rapid
variation of pressure occurs, close to the sitthefsmallest bearing gap height. Simula-
tions were performed on meshes from a sequenceindgtbasing element density until
convergence was reached, i.e. until the resulhertwo consecutive meshes were simi-
lar enough. Final computations were done on thesetnmesh including 80194 nodes
and 154336 triangular elements with linear intesiioh of the pressure.

SIMULATION RESULTS

Distribution of pressure in the oil film inside tlariable-height gap on the valve
plate was analyzed using the finite element mettiogl,developed computer program
and geometric and exploitation data of the vahateptylinder block system in an axial
piston pump.

The following input parameters were assumed in dbgeloped computational
model (F|g 1):

in the pressure port the pressure= B2 MPa,

— in the suction port the pressurges MPa,

— outside and inside the valve plate the pressyredpMPa,

— angular velocity of the cylinder bloek= 157 rad/s,

— dynamic viscosity of the ojl = 0.0252 Pas,

— the angle of the smallest height of the gap wiipeet to the axis ¥ = 0.785 rad,

— the angle of the cylinder block with respect of Wadve platee = 0.000523 rad,

— minimal gap height j, = 310" m

characteristic radii of the valve plate afe=r0.0284 m, y= 0.0304 m, §=
0. 0356 m, and,= 0.0376 m.

In Fig. 3 distribution of oil film pressure on thalve plate is presented. Pressure
variation in the vicinity of the lowest bearingpgheight is of greatest interest. In the
confusor part of the gap (where the height decsdame overpressure peak is visible,
whereas in the diffuser part a negative pressuak f@ms. Peripheral section at the
radius 0.03715 m with the greatest pressure psaksgicted in Fig. 4.
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Fig. 3. Oll film pressure distribution on the valpkate
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Fig. 4. Overpressure and negative pressure wavefofrie oil film in the vicinity of the smallest
height gap of the circumferential section at théius.r = 0.03715 m depending
on the cylinder block revolution

In the analysis of the pressure distribution atuarice of the geometrical and ex-
ploitation parameters of the cylinder block-valMate system on the pressure increase
and decrease in the smallest gap height area Was itato consideration

In Fig. 5 the effect of the cylinder block inclifat with respect to the valve plate is
shown. As the inclination angle increases, the padikes of the maximum pressure and
negative pressure decrease. The greatest valuesfocsmall angles.

In Figs. 6—7 the influence of exploitation paramgten the maximum and mini-
mum pressure values is depicted.
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Fig. 5. Values of maximum and minimum pressureildfilm
depending on the cylinder block inclination angle
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Fig. 6. Values of maximum and minimum pressureildfilon depending: a) on the cylinder block
angular velocityw, b) on the dynamic viscosity coefficignbf oil
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Fig. 7. Values of maximum and minimum pressureildiiloy depending
on the pump pressurg p

An increase in the angular velocity and in dynamigcosity coefficient causes a
linear increase in the values of the maximum andimmm pressure of the oil film.
Changes in the pump pressure, however, only sigtifgct the above mentioned pres-

Sures.
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CONCLUSIONS

The present investigations lead to the followingatasions:

1. The finite element method combined with numericatimds enables the solu-
tion of the Reynolds equation in order to determiime oil film pressure in variable
height gaps between cooperating elements.

2. The distribution of the maximum and minimum pressuof the oil film in the
area of the smallest height gap are dependenteoselected geometrical and exploita-
tion parameters of the pump. As the inclinationlarg the cylinder block decreases and
the angular velocity and the dynamic oil viscositefficient increase, the values of the
maximum and minimum pressures increase. Contrattyigpthe pump pressure has little
influence on the maximum and minimum pressures.
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