
TEKA Kom. Mot. Energ. Roln., 2006, 6, 55–66 

 

 

 

 

 

 

 

 

SHOULD WE ALWAYS USE THE MEAN VALUE? 

 
 

 

Krzysztof S. Kubacki 
 

Department of Applied Mathematics, Agricultural University of Lublin 

 

 

 

 

Summary. In many books on statistics for practitioners the expectation µ  (sample mean x ) is 

said to be a measure of the central tendency in the distribution (of the sample). But it is not always 

the case as the concept of expectation is analogous to the physical concept of the center of gravity 

of a distribution of mass.  The aim of the paper is to influence the practitioners to consider the use 

of a larger variety of models., e.g. normal mixtures. 

 
Key words: estimator, robustness, normal mixture, Eisenberger’s criterion; Behboodian’s criterion 

 

 

INTRODUCTION 

 

A random vector 
1( )nX … X, ,  is called a random sample of size n  if 

1 nX … X, ,  are 

independent and identically (as 
XP ) distributed. A probability distribution 

XP  is a 

mathematical model that relates the value of the variable X  with the probability of 

occurrence of that value in the population. Such a random sample is said to be from a 

distribution with mean µ  and variance 2σ  if each 
iX  has mean µ  and variance 2σ . 

For a random sample 
1( )nX … X, , , the sample mean is 

1
(1 )

n

n jj
n XX =

= / ∑ , and the sam-

ple variance is 2 2

1
(1 ) ( )

n

nn jj
S n X X=

= / − .∑  These are one-dimensional random variables 

with the following properties (cf. e.g. Lehmann [1991]):  

 

a) nEX µ= , 2( )nVar nX σ= /  [Niedokos 1995], 

b) 2 2( 1)nES n nσ= − /  [Niedokos 1995], 2 4 2( ) 2( 1)nVar S n nσ= − / ,  

c) the sample mean nX  and sample variance 
2

nS  are independent for a random  

sample from a normal population; this independence holds only for normal populations,  
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d) nX  (respectively
2

nS ) converges with probability 1 to µ  (respectively 2σ )  

as n→∞,  which means that nX  (respectively 
2

nS ) is a strongly consistent estimator 

of the parameter µ  (respectively 2σ ).  

 

 

The last property d), follows from the well known strong law of large numbers: If 

1 2 …ξ ξ ξ, , ,  are independent and identically distributed random variables with finite 

expectation E Mξ =  and variance 2( )Var Dξ = , then 
n Mξ →  with probability 1.  

In most textbooks only the consistency (which means the stochastic convergence) 

of 
nX  (respectively 2

nS ) is mentioned. The consistency follows from ( )a  (respectively 

( )b ) and the famous inequality of Chebyshev: If ξ  is a random variable with finite 

expectation Eξ  and variance ( )Var ξ , then for any real ( )Varλ ξ> , 

2( ) ( )P E Varξ ξ λ ξ λ| − |> ≤ / .    

Since ( ) 0nVar X →  (respectively 2( ) 0nVar S → ) as n→∞ , the stochastic con-

vergence follows: 
nX µ→  and 2 2

nS σ→  (with probability).  

In spite of good properties of 
nX  it is not always the best possible estimator of the 

unknown parameter µ  (cf. e.g.[in:] Lehmann [1991]). 

When n  is small, or we do have any additional information on X , such as e.g. in-

formation on distribution function of X , we can, use estimators of the unknown pa-

rameter θ  which are better than 
nX , Let ( )j jX I Z L= > , where 2( )

j
Z N µ σ,� . 

Then ( )j jEX P Z L p= > �  and 
1

(1 ) ( ) { }
n

j jj
X n I Z L # j n Z L n p

=
= / > = ≤ : > /∑ %� . 

Tarasińska discusses the estimates of a small fraction p  under normality of Z ; she 

compares p% , ˆ ( )X L
S

p −Φ� , and other unbiased estimator ˆ̂p  which has conditionally a 

linear function of ( ) /X L S−  the beta distribution. 

Suppose X  denotes the average monthly rainfall in Honolulu, Hawaii (1941-    

-1980). Due to [Brase Ch.H and Brase C.P. 1987] we have the following data: 

 

 
Table 1. Average Monthly Rainfall, Honolulu, Hawaii (1941-1980) 

Month Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec. 

Rainfall (in) 4.40 2.46 3.18 1.36 0.96 0.32 0.60 0.76 0.67 1.51 2.99 3.64 
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Fig. 1. Average monthly rainfall, Honolulu, Hawaii (1941-1980) 

 

Is it informative if we say that the mean value of X  equals to 1.90 (in)? What if 

me calculate standard deviation S  and obtain 1.37 (in)? And what if we calculate the 

coefficient of variation and obtain more than 72%? 

 

 

 

MIXTURE OF DISTRIBUTIONS 

 

Fortunately, several subjects can be modeled by contaminated distributions (called 

mixtures), see e.g. Johnson et al. [1995] and Everitt and Hand [1981].  

Imagine that a population is formed by combining two given populations in a given 

proportion. The distribution of this third population may be derived from the two given 

distributions and the proportion mentioned. This distribution is termed in the literature a 

mixture distribution or compound distribution or contaminated distribution.  

The problems of central interest arise when data are not available for each condi-

tional distribution separately, but only for the overall mixture distribution. Often such 

situations arise because it is impossible to observe some underlying variable which splits 

the observations into groups – only the combined distribution can be studied. In these 

circumstances interest often focuses on estimating mixing proportions and on estimating 

the parameters in the conditional distributions. Everitt and Hand [1981] concentrate in 

these areas. 

The applications of finite mixture distributions are treated in Everitt and Hand 

[1981] usually from the mathematical statistics point of view (estimation of parameters 

by the method of moments or maximum likelihood estimation). We prefer a graphical 

method here. 
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Table 2. Dissection of a heterogeneous distribution.  

Distribution of 430 samples of peat according to ash content. Class length: 0.5% 

 

Ash (%)                         Frequency                                                                    f                F1           F2 

0.25  1                                                                                                           1                1 

0.75  1                                                                                                           1                1 

1.25  11                                                                                                         2                2 

1.75  11111                                                                                                   5                5 

2.25  111111111111                                                                                   12              12 

2.75  111111111111111111                                                                       18              17  1

3.25  11111111111111111111                                                                   20              18  2

3.75  1111111111111111111                                                                     19              16  3

4.25  1111111111111111                                                                           16              10  6

4.75  11111111111111                                                                               14                3 11

5.25  11111111111111111111                                                                   20                1 19

5.75  1111111111111111111111111                                                         25              25

6.25  11111111111111111111111111111111111                                     35              35

6.75  1111111111111111111111111111111111111111111                     43              43

7.25  111111111111111111111111111111111111111111111111           48              48

7.75  111111111111111111111111111111111111111111111                  45              45

8.25  11111111111111111111111111111111111                                      35              35

8.75  11111111111111111111111111                                                        26              26

9.25  11111111111111111                                                                          17              17

9.75  1111111111111                                                                                  13              

10.25  111111111                                                                                            9                9

10.75  1111                                                                                                      4                4

11.25  11                                                                                                           2                2

                                                                                                                                  

  Total:                                                                                                 430          86 344

 

These data are the ash content of 430 peat samples given originally by Hald [1952]; 

Everitt and Hand [1981] who examined how the method of moments estimation proce-

dure performs in practice. The method of moments gives: 

 

� � �

� � �

11

22

0.24 ; 3.42 ; 1.14;

1 0.76 ; 7.41; 1.46,

p

p

µ σ

µ σ

   =       =     =

− =     =     =
                               (1) 

 

whereas maximum likelihood estimates (taken from Hasselblad [1966]) are as follows: 

 

� � �

� � �

11

22

0.22 ; 3.21; 1,00;

1 0.78 ; 7.34 ; 1.49.

p

p

µ σ

µ σ

   =       =     =

− =     =     =
                               (2) 

 

Dissection of the observed values into two groups, each corresponding to a condi-

tional normal distribution as given in Table 2, will be discussed latter on. In some ex-

periments the analysis of a sample (histogram or frequency polygon) seems to suggest an 

existence of a mixture of two populations, as shown in Table 2. In some cases the data 
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can be shown by one of the most useful graphical techniques called stem-and-leaf dis-

play [Brase Ch.H and Brase C.P. 1987].  

 

 

MIXTURE OF TWO NORMAL  DISTRIBUTIONS 

 

A normal mixture occurs when a population is made up of two or more individual 

sub-populations (components), each of which is distributed normally, but with different 

parameters values.  

1. Suppose 
i

Φ  denotes the normal distribution function with mean iµ  and vari-

ance 2

iσ  ( 1 2)i = , , and let 
1 2(1 )F p p= ⋅Φ + − ⋅Φ . Then F  is a normal mixture dis-

tribution. It is easy to see that  

 

1 2

1 2

1 2

( ) ( ( ) (1 ) ( ))

( ) (1 ) ( )

(1 )

EX x dF x x d p x p x

p x d x p x d x

p p

µ

µ µ

+∞ +∞∗

−∞ −∞

+∞ +∞

−∞ −∞

= = Φ + − Φ

= Φ + − Φ

= + − ,

∫ ∫

∫ ∫

�

                  (3) 

 

and similarly, for any r>0,  

 

1 2( ) (1 ) ( )
r r r

EX p x d x p x d x
+∞ +∞

−∞ −∞
= Φ + − Φ .∫ ∫                           (4) 

 

Clearly, as 
2 2( ) ( )Var Y EY EY= − , we have  

 
2 2 2 2

1 2 1 2

2 2 2 2 2
1 1 2 2 1 2

2 2 2
1 2 1

2

2 1 2

2 2 2
1 2 1 2

( ) ( ) (1 ) ( ) ( (1 ) )

( ) (1 )( ) ( (1 ) )

(1 ) (1 )

(1 ) (1 (1 )) 2 (1 )

(1 ) (1 )( )

Var X pE p E p p

p p p p

p p p p

p p p p

p p p p

σ µ µ

σ µ σ µ µ µ

σ σ µ

µ µ µ

σ σ µ µ

= Φ + − Φ − + −

= + + − + − + −

= + − + −

+ − − − − −

= + − + − − .

�

             (5) 

We can also write  

 
2 2 2 2

1 2 1 2( ) (1 ) ( ) (1 )( )Var X p p p pσ σ µ µ µ µ∗ ∗= + − + − + − − .                (6) 
 

2. Let 
i
φ  denote the density function of the normal 2( )i iN µ σ,  distribution, 

1 2i = , . Then 
1 2( ) ( ) (1 ) ( )f x p x p xφ φ= + −  is called a normal mixture density. It is easy 

seen from the plot of densities 1φ  and 2φ  that f  is symmetrical if  

a) 
1 2µ µ=  or  

b) 1 2p = /  and 
1 2σ σ= . 
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3. The third view on normal mixture is the following. Suppose Λ  denotes a dis-

crete random variable, assuming two distinct positive values: 
1λ  and 

2
λ  with positive 

probabilities p  and 1-p. Let X  be a random variable which is defined as follows: con-

ditionally on 
jλΛ = , 2( )

j j
X N µ σ,� , 1 2j = , . Then the unconditional distribution of 

X  is that of F , and the unconditional density function of X  is that of f , i.e. X  is a 

normal mixture (with mixing random variable Λ ).  

 

Finite mixture distributions, and more specifically normal mixtures, have an impor-

tant applications in genetics (see e.g. Lin and Biswas [2004] and references therein) and 

have been used in a wide variety of biomedical and other scientific fields [Everitt and 

Hand 1981, Johnson et al. 1995]. For example Pearson attempted to solve the parameter 

estimation problem using the method of moments [Everitt and Hand 1981]. 

Some of the more well known applications of normal mixtures include an analysis 

of fish lengths (Bhattacharya, Hosmar, MacDonald), botany (e.g., Fisher’s iris data) and 

zoology (e.g., Pearson’s trypanosome data), cf. [Everitt and Hand 1981] and references 

therein. 

 

 

CLASSIFICATION OF NORMAL MIXTURES 

 

Normal mixtures can be classified according to whether the individual components 

have unequal means and/or variances. The normal mixture with unequal component 

means and variances (location and scale mixture) of normals (LSMN) is given by  

 

2 21 2

1 1 2 2

1 2

1 1 2 2

1 1 1 1
( ) [ exp{ ( ) } exp{ ( ) }]

2 22

1
( ) ( )

x xp p
f x

x xp p

µ µ
σ σ σ σπ

µ µ
φ φ

σ σ σ σ

− −−
= +

− −−
= ⋅ + ⋅ ,

                (7) 

 

where φ  stands for the standard normal density function (cf. [Everitt and Hand 1981, 

Ravishanker and Dey 2002]). Parameters which are of interest include p , the ratio 

2 1σ σ/ , and the distance between the component means 
2 1 1SD µ µ σ=| − | / .  

The normal mixture with unequal component means and common component vari-

ance (location mixture) of normals (LMN) is given by  

 

1 21
( ) ( ) ( )

x xp p
f x

µ µ
φ φ

σ σ σ σ
− −−

= ⋅ + ⋅ .                                   (8) 

 

The scale mixture of normals (SMN) has a common mean and is given by  

 

1 1 2 2

1
( ) ( ) ( )

p x p x
f x

µ µ
φ φ

σ σ σ σ
− − −

= ⋅ + ⋅ .                                  (9) 
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The SMN was Tukey’s initial model for his development of robust methods (see 

[Tukey 1960]).  

One might expect a mixture to be multimodal. However, mixtures can also be uni-

modal and symmetric or unimodal and skewed, thereby making it difficult to distinguish 

between non-normal and non-mixture distributions, such as beta or gamma distributions. 

A sufficient condition that a normal mixture is unimodal for any value of p  is that  

 
2 2 2

2 21 2
2 1 2 12 2 2

1 2

27 27
( ) (or letting )

4( ) 4(1 )
S

a
a D

a

σ σ
µ µ σ σ

σ σ
− < , = <

+ +
;         (10) 

 

a sufficient condition that there exist values of p  for which the mixture is bimodal is 

that 

 
2 2 2

2 21 2
2 1 2 12 2 2

1 2

8 8
( ) (or letting )

1
S

a
a D

a

σ σ
µ µ σ σ

σ σ
− > , = >

+ +
              (11) 

 

(Eisenberger [1964]). For LMN mixtures, the sufficient condition for unimodality (10) 

reduces to 1,837SD <  while for bimodality (for some p ) the sufficient condition (11) 

is 2SD > . For LSMN, the unimodality and bimodality conditions are respectively. 

 

2 2

2 2
2,588 and 2,82

1 1
S S

a a
D D

a a
<                 >

+ +
.                      . 

 

Behboodian [1970] derives the following condition for a normal mixture to be uni-

modal:  

 

2 1 1 2 2 12min( ) (or equivalently) 2min(1 )SDµ µ σ σ σ σ| − |≤ , ,  ≤ , / .         (12) 
 

His criterion is better than (10) for 
2 1 ( 11 16 16 11)a σ σ/ ∈ / , /� . In other case, 

Eisenberger’s criterion (10) is better. In the following picture, Fig. 12 one can see the 

boundaries for 
SD  given by inequalities (10) (plot

1F ), (12) (plot 
2

F ) and (11) (plot 
3

F ), 

for 0 2a≤ ≤ .  

Note that when 0 5p = .  and 
1 2σ σ σ= = , then (12) (i.e. inequality 0 2SD≤ ≤ ) 

becomes a necessary and sufficient condition for a unimodal distribution with the mode 

1 2( ) 2µ µ+ /  – it follows since the normal mixture density is symmetrical. Behboodian 

also shows that a sufficient condition for unimodality of LMN is given by  

 

2 1 log log 2SD p q≤ + | − | / .                                        (13) 
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boundaries for DS
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F_1 F_2 F_3                                         a

 
Fig. 2. Boundaries for 

SD  given by Eisenberger [1964] and Behboodian [1970] 

 

This is also a necessary condition when 1 2p = /  (from the same reason as above) 

[Everitt and Hand 1981]. 

Note that letting 
1 10, 1µ σ=   = , and 

2 23, 1µ σ=   = , we get 1a =  and 3SD = . 

Then from the above Eisenberger’s criterions it follows that the mixture is not unimodal 

for all values of p ; and that there exist p  for which this mixture is bimodal. Moreover, 

it follows from (13) that the mixture is unimodal for all p  such that 

| log log(1 ) | 2,5p p− − ≥ . 

Examples of bimodal and unimodal distributions are shown in Figs. 3 to 8. The first 

three illustrate the dependence on p of the bimodality property when condition (11) 

holds; we put 1a =  and 3SD =  as in the above consideration (note that with e.g. 

0,999p =  the mixture is unimodal). Figs. 6–8 illustrate the unimodality of a mixture of 

two normal distributions independent of the value of p, since in this case Behboodian’s 

criterion (12) holds whereas Eisenberger’s criterion (10) does not. This proves that Be-

hboodian’s criterion (12) is sharper than Eisenberger’s. Fig. 9 shows the density func-

tions of some SMN mixtures compared to a single normal distribution. 
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density function of location mixture of normals
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Fig. 3. Density function of LMN with p = 0.3; N(0.1); N(3.1); (D = 3 and a = 1) 

density function of location mixture of normals
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Fig. 4. Density function of LMN with p = 0.5; N(0.1); N(3.1) 

density function of location mixture of normals
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Fig. 5. Density function of LMN with p = 0.9; N(0.1); N(3.1) 
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density function of location and scale mixture of normals
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Fig. 6. Density function of LSMN with p = 0.3; N (0.1); N (2; 2.25); (12) holds whereas (10) does not 

density function of location and scale mixture of normals
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Fig. 7. Density function of LSMN with p = 0,5; N(0,1); N(2; 2,25); (12) holds whereas (10) does not 

wykres mieszaniny dwóch rozkładów normalnych 

(density function of location and scale mixture of normals)
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Fig. 8. Density function of LSMN with p = 0.8; N (0.1); N (2; 2.25); (12) holds whereas (10) does not 
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Fig. 9. Density functions of selected SMN mixtures, each with N (0.1) multiplying by p or 1-p  

Fig. 10. Dissection of a heterogeneous distribution from Table 1 
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We end the paper with some numerical characteristics of the data shown in Table 2. 

The sample moments for these data are also calculated:  

sample mean 6.45= ; sample variance 4.86= ; sample standard deviation 2.20= ; 

moments for smaller component:     

 

mean1 3.10= ; variance1 0.87= ; standard_dev1 0.93= ; 

 

moments for bigger component:       

 

mean2 7.28= ; variance2 2.35= ; standard_dev2 1.53= ; 

proportion: 

0.20p = ;  1 0.80p− = . 

 

Using (3) and (5) we can calculate that: 

 

0.2 3.10 0.8 7.28 6.45EX = ⋅ + ⋅ =  

and  
2

( ) 0.2 0.87 0.8 2.35 0.2 0.8 (7.28 3.10) 4.85Var X = ⋅ + ⋅ + ⋅ ⋅ − = , 

 

which are very close to sample moments given above.  
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