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ESTIMATION OF A SMALL FRACTION
UNDER NORMALITY

Joanna Tarasinska

Department of Applied Mathematics, Agricultural University of Lublin

Summary. We are interested in the fraction p of units for which a certain normally distributed
characteristic X exceeds a permissible value L. When p and the sample size n are small, the frac-
tion in the sample can not be used as the estimator of p. The aim of the paper is to encourage the
practitioners-non statisticians to use in such a situation different estimators than simple ,,fraction in
the sample”.
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INTRODUCTION

In many situations we have a random variable X which is normally distributed
(X ~ N(u,0*)) and we are interested in an estimation of the fraction of units for which
the event {X > L} happens. L can be, for example, the maximal permissible value of X

and in such a case we want to estimate the fraction of defective units. It is a problem of
an estimation of the probability p=Pr(X >L). Having the random sample

X,X,,...X, we can estimate p just by the fraction of defective units in the sample, it

means p = ﬁ , where k is the number of X, being greater than L.
n

Such an estimator ignores the fact of normality of X. Additionally, it needs large
sample size when p is small. Let us consider for example p ~0.05 and n=10. p in
such a case is absolutely useless. It is known that there exist better estimators.

S -L . S
Considering p=Pr(X > L) = d{“—j we have for example the maximum likeli-
c

hood estimator [Patel and Read 1996]:
. X-L
b= @(—J , (1)
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where X =lZXi , §? =lZ(Xi —-X)*. ®()is the cumulative distribution
] o
function read from normal tables.

There also exists the “best” unbiased estimator of p which has the smallest variance
in the class of unbiased estimators. It can be calculated [Lieberman and Resnikoff 1995,
Patel and Read 1996] by the formula

0 if a<0
A n n .
=1, Z-1,2-1 if 0<a<l , 2
p a[z > ] a ()
1 ifa>1
where a = 0.5 1+M , §7 :LZ(Xi—)?)Z,
(n-1)S n-14

Ia(p,q):B"l(p,q)jtp_l(l—t)q_ldt is the incomplete beta function ratio and
0

1
B(p,q) is the complete beta function B(p,q) = jtp_l (1-0)""dr.
0

So, contraryto p, ;:7 demands rather troublesome calculations.

It is easy to find a formula for (1) and (2) in the situation when p =Pr(X <L). In
—K
o

L
such a case we have p = d)(

\/Z(L—)?)}

(n-nS"

j , p= @(%), p is the same as in (2) with

a= O.5|:1 +

Example (theoretical one, the idea taken from Bowker and Lieberman 1959, p.57:

The clearance between the external shaft diameter and the internal bearing diameter
can be assumed to be normally distributed. The minimum permissible clearance is 0.005
inches.

For a random sample of 5 pairs of shaft and mating bearing we get the following

measurements of clearance (in inches): 0.0080, 0.0079, 0.0140, 0.0081, 0.0094.
We have

X =0,00948, S~0,002325, S*~0,002599, a=001828 so p=0027 and
5 =0,004 .

Several authors have compared p and ;%[Zacks and Eden 1966, Brown and
Rutemiller 1973, Gertsbakh and Winterbottom 1991] taking into consideration their
MSE (mean squared error) and bias of p. It turns out for example that, for p ~ 0.05,
p is nearly unbiased.
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Fig. 1. The histogram for p,n =10, p=10.05
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Fig. 3. The histogram for p, n =50, p = 0.05
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Fig. 2. The histogram for ]:7 ,n=10,p=0.05
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Fig. 4. The histogram for p,n =150, p=0.05
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Fig. 5. The distribution of p, n=10, p=0.05
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Fig. 6. The distribution of p , n =150, p=0.05
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Of course, MSE does not say everything about the distribution. To check whether

the distributions of p and 1:9 differ much or not, some simulations were done.
For n =10 and 50, p = 0.05 five thousands random samples from standard normal

distribution were generated and p and 1:9 were computed (with L = o! (1-p)) . Their
histograms are presented in Figures 1,2,3 and 4. They can be compared with the distribu-
n

k _ n—k
kjp (I-p)" .

Of course it can be seen from Fig. 5 that p is completely useless in the case of

. ~ . . ~ k
tion of p given in the Figures 5 and 6. Of course Pr[p = —j = [
n

small sample size.
Table 1 contains the MSE and bias of p calculated from simulations. The MSE

5000
1

2( p.—0.05)% | bias by the formula
i=1

for p was calculated by the formula MSE = ——
5000 <

5000

— Z D; —0.05 . The MSE for 1:9 is equal to the variance of 1271‘ because 1:9 is unbi-

5000 4

ased. From Table 1 it can be seen that pis superior to p when MSE is the criterion.

Table 1. The MSE’s and bias of p

P p
MSE bias MSE
n=10 0.002100 -0.016 0.002662
n=>50 0.000491 0 0.000495

ROBUSTNESS OF p AND f? TO DEVIATIONS FROM NORMALITY

Both estimates p and 1:9 can be used when X is normally distributed. But what
happens if not? Let us assume X ~p+c-t;, where #; is Student’s ¢ distribution with
three degrees of freedom. In such a case the variance of X is three times larger than un-
der normality. Of course now ;:7 is not the best unbiased estimator and p is not the

maximum likelihood one.
What are their properties? How much worse are they? To answer these questions
5000 samples of size n = 10 and n = 50 were generated in the case p = 0.05.

The Figures 7 and 8 present the histograms of p and p.
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Fig. 7. The histogram for p, n =10, p = 0.05, without normality
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Fig. 8. The histogram for 1:7 ,n =10, p=0.05, without normality

Table 2. The MSE’s and biases without normality

b b
MSE bias MSE bias
n=10 0.006337 +0.0169 0.01960 +0.0129
n=>50 0.003155 +0.0229 0.01776 +0.0224

So, phas got less mean square error and can be considered as better than p when
the probability which is to be estimated is near 0.05.

LARGE SAMPLE SIZE

When sample size 7 is large enough, the estimate p can be used. Let us compare it
with p. Let us assume we are interested in he probability of attaining the relative error
not greater than a certain acceptable value €. That is let us compare the probabilities



P-p
p
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pP—p

Pr| <g¢| and Pr
P

and €=0.1, 0.2, 0.3.

Pr[p_p

p
proximation to non-central ¢ distribution ([5]). Pr(

< 8) . Table 3 gives the results for n = 200, p = 0.05

SeJ is calculated under assumption of normality using normal ap-

pP-p
p

< 8) does not depend on the
distribution of X and is calculated using binomial probability.

Table 3. Comparison of p and p , n =200, p =0.05

g 0.1 02 03
pr [P <¢ 034 0.63 0.82
p
Pr[p;p Sa] 037 0.58 0.75

So, when sample size is large enough to use p just this estimator should be prefer-
able as it is as good as p under normality and, additionally, it is completely independent
upon the distribution of X.
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