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Summary. We are interested in the fraction p of units for which a certain normally distributed 

characteristic X exceeds a permissible value L. When p and the sample size n are small, the frac-

tion in the sample can not be used as the estimator of p. The aim of the paper is to encourage the 

practitioners-non statisticians to use in such a situation different estimators than simple „fraction in 

the sample”. 
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INTRODUCTION 

 

In many situations we have a random variable X which is normally distributed 

( ),(~ 2σµNX ) and we are interested in an estimation of the fraction of units for which 

the event { }LX >  happens. L can be, for example, the maximal permissible value of X 

and in such a case we want to estimate the fraction of defective units. It is a problem of 

an estimation of the probability )Pr( LXp >= . Having the random sample 

nXXX K,21
 we can estimate p just by the fraction of defective units in the sample, it 

means 
n

k
p =~  , where k is the number of 

iX  being greater than L.  

Such an estimator ignores the fact of normality of X.  Additionally, it needs large 

sample size when p is small.  Let us consider for example 05.0≈p  and 10=n . p~  in 

such a case is absolutely useless. It is known that there exist better estimators. 

Considering 







σ
−µ

Φ=>=
L

LXp )Pr(  we have for example the maximum likeli-

hood estimator [Patel and Read 1996]: 








 −
Φ=

S

LX
p̂ ,                                                 (1) 
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. )(⋅Φ is the cumulative distribution 

function read from normal tables. 

There also exists the “best” unbiased estimator of p which has the smallest variance 

in the class of unbiased estimators. It can be calculated [Lieberman and Resnikoff 1995, 

Patel and Read 1996] by the formula 
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)1(),(),(  is the incomplete beta function ratio and 

),( qpB  is the complete beta function ∫ −− −=
1

0

11
)1(),( dtttqpB
qp
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So,  contrary to p̂ , p̂̂  demands rather troublesome calculations. 

It is easy to find a formula for (1) and (2) in the situation when )Pr( LXp <= . In 

such a case we have 



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p̂ , p̂̂  is the same as in (2) with 
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Example (theoretical one, the idea taken from Bowker and Lieberman 1959, p.57: 

The clearance between the external shaft diameter and the internal bearing diameter 

can be assumed to be normally distributed. The minimum permissible clearance is 0.005 

inches. 

For a random sample of 5 pairs of shaft and mating bearing we get the following 

measurements of clearance (in inches): 0.0080, 0.0079, 0.0140, 0.0081, 0.0094. 

We have  

00948,0=X , 002325,0≈S , 002599,0
* ≈S ,  01828,0=a  so 027,0ˆ =p  and 

004,0ˆ̂ =p . 

 

Several authors have compared p̂  and p̂̂ [Zacks and Eden 1966, Brown and 

Rutemiller 1973, Gertsbakh and Winterbottom 1991] taking into consideration their 

MSE (mean squared error) and bias of  p̂ . It turns out for example that, for 05.0≈p , 

p̂ is nearly unbiased. 
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Fig. 3. The histogram for p̂ , n = 50, p = 0.05 
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Fig. 1. The histogram for p̂ , n = 10, p = 0.05 
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Fig. 2. The histogram for p̂̂ , n = 10, p = 0.05 
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Fig. 5. The distribution of p~ , n=10, p=0.05 

 

 
Fig. 6. The distribution of p~ , n = 50, p = 0.05 
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Fig. 4. The histogram for p̂̂ , n = 50, p = 0.05 
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Of course, MSE does not say everything about the distribution. To check whether 

the distributions of p̂  and p̂̂  differ much or not, some simulations were done. 

For n = 10 and 50, p = 0.05 five thousands random samples from standard normal 

distribution were generated and p̂  and p̂̂  were computed (with )1(1 pL −Φ= − ) . Their 

histograms are presented in Figures 1,2,3 and 4. They can be compared with the distribu-

tion of p~  given in the Figures 5 and 6. Of course 
knk

pp
k

n

n

k
p

−−
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Of course it can be seen from Fig. 5 that p~  is completely useless in the case of 

small sample size. 

Table 1 contains  the MSE and bias of p̂  calculated from simulations. The MSE  

for p̂  was calculated by the formula ∑
=

−=
5000

1

2
)05.0ˆ(

5000

1

i

ipMSE  , bias by the formula 

05.0ˆ
5000

1
5000

1

−∑
=i

ip . The MSE for p̂̂  is equal to the variance of ip̂̂  because p̂̂  is unbi-

ased. From Table 1 it can be seen that  p̂ is superior to p̂̂  when MSE is the criterion. 

 

 
Table 1. The MSE’s and bias of p̂  

p̂  p̂̂  
 

MSE bias MSE 

n = 10 0.002100 -0.016 0.002662 

n = 50 0.000491 0 0.000495 

 

 

ROBUSTNESS OF p̂  AND p̂̂  TO DEVIATIONS FROM NORMALITY 

 

Both estimates p̂  and p̂̂  can be used when X is normally distributed. But what 

happens if not? Let us assume 3~ tX ⋅σ+µ , where t3 is Student’s t distribution with 

three degrees of freedom. In such a case the variance of X is three times larger than un-

der normality. Of course  now p̂̂  is not the best unbiased estimator and p̂  is not the 

maximum likelihood one. 

What are their properties? How much worse are they? To answer these questions 

5000 samples of size n = 10 and n = 50 were generated in the case p = 0.05.  

The Figures 7 and 8 present the histograms of p̂  and p̂̂ . 
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Fig. 7. The histogram for p̂ , n = 10, p = 0.05, without normality 
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Fig. 8. The histogram for p̂̂ , n = 10, p = 0.05, without normality 

 
Table 2. The MSE’s and biases without normality 

p̂  p̂̂  
 

MSE bias MSE bias 

n = 10 0.006337 +0.0169 0.01960 +0.0129 

n = 50 0.003155 +0.0229 0.01776 +0.0224 

 

So, p̂ has got less mean square error and can be considered as better than p̂̂  when 

the probability which is to be estimated is near 0.05. 

 

LARGE SAMPLE SIZE 

 

When sample size n is large enough, the estimate p~  can be used. Let us compare it 

with p̂ . Let us assume we are interested in he probability of attaining the relative error 

not greater than a certain acceptable value ε. That is let us compare the probabilities 
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

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
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
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−
p

pp~
Pr . Table 3 gives the results for n = 200, p = 0.05 

and ε = 0.1, 0.2, 0.3.  
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
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
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−
p

pp̂
Pr  is calculated under assumption of normality using normal ap-

proximation to non-central t distribution ([5]). 









ε≤

−
p

pp~
Pr  does not depend on the 

distribution of X and is calculated using binomial probability. 

 

Table 3. Comparison of p̂  and p~ , n = 200, p = 0.05 

ε 0.1 0.2 0.3 

 0.34 0.63 0.82 

 0.37 0.58 0.75 

 

So, when sample size is large enough to use p~  just this estimator should be prefer-

able as it is as good as p̂  under normality and, additionally, it is completely independent 

upon the distribution of X. 

 

 

REFERENCES 

 
Bowker A.H., Lieberman G.J., 1959: Engineering Statistics. Prentice-Hall Inc. 

Brown G.G., Rutemiller H.C., 1973: The efficiencies of maximum likelihood and minimum vari-

ance unbiased estimators of fraction defective in the normal case. Technometrics,15, 849-855. 

Gertsbakh I., Winterbottom A., 1991: Point and interval estimation of normal tail probabilities.  

Communications in Statistics-A20 (4), 1497-1514. 

Lieberman G.J., Resnikoff G.J., 1955:  Sampling plans for inspection by variables. Journal of the 

American Statistical Association  50, 457-516. 

Patel J.K., Read C.B. ,1996: Handbook of the  normal distribution. 1996, Marcel Dekker inc., New 

York. 

Zacks S., Eden M., 1966: The efficiences In small samples of the maximum likelihood and best 

unbiased estimators of reliability functions. Journal of the American Statistical Association, 

61, 1033-1051. 

 

 











ε≤

−

p

pp̂
Pr











ε≤

−

p

pp~
Pr


