ESTIMATION OF A SMALL FRACTION UNDER NORMALITY

Joanna Tarasińska

Department of Applied Mathematics, Agricultural University of Lublin

Summary. We are interested in the fraction p of units for which a certain normally distributed characteristic X exceeds a permissible value L. When p and the sample size n are small, the fraction in the sample can not be used as the estimator of p. The aim of the paper is to encourage the practitioners-non statisticians to use in such a situation different estimators than simple "fraction in the sample".

Key words: normal distribution, estimator of a fraction, robustness

INTRODUCTION

In many situations we have a random variable X which is normally distributed $(X \sim N(\mu, \sigma^2))$ and we are interested in an estimation of the fraction of units for which the event $\{X > L\}$ happens. L can be, for example, the maximal permissible value of X and in such a case we want to estimate the fraction of defective units. It is a problem of an estimation of the probability $p = \Pr(X > L)$. Having the random sample $X_1X_2, \dots X_n$ we can estimate p just by the fraction of defective units in the sample, it means $\tilde{p} = \frac{k}{n}$, where k is the number of X_i being greater than L.

Such an estimator ignores the fact of normality of X. Additionally, it needs large sample size when p is small. Let us consider for example $p \approx 0.05$ and n = 10. \tilde{p} in such a case is absolutely useless. It is known that there exist better estimators.

Considering $p = \Pr(X > L) = \Phi\left(\frac{\mu - L}{\sigma}\right)$ we have for example the maximum likelihood estimator [Patel and Read 1996]:

$$\hat{p} = \Phi\left(\frac{\overline{X} - L}{S}\right),\tag{1}$$

where $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$, $S^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2$. $\Phi(\cdot)$ is the cumulative distribution

function read from normal tables.

There also exists the "best" unbiased estimator of p which has the smallest variance in the class of unbiased estimators. It can be calculated [Lieberman and Resnikoff 1995, Patel and Read 1996] by the formula

$$\hat{\hat{p}} = \begin{cases} 0 & \text{if } a < 0 \\ I_a \left(\frac{n}{2} - 1, \frac{n}{2} - 1 \right) & \text{if } 0 \le a \le 1 \\ 1 & \text{if } a > 1 \end{cases},$$
(2)
where $a = 0.5 \left[1 + \frac{\sqrt{n}(\overline{X} - L)}{(n-1)S^*} \right], S^{*2} = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2,$
$$I_a(p,q) = B^{-1}(p,q) \int_0^a t^{p-1} (1-t)^{q-1} dt \text{ is the incomplete beta function ratio and} \end{cases}$$

B(p,q) is the complete beta function $B(p,q) = \int_{0}^{t} t^{p-1} (1-t)^{q-1} dt$.

So, contrary to \hat{p} , \hat{p} demands rather troublesome calculations.

It is easy to find a formula for (1) and (2) in the situation when p = Pr(X < L). In

such a case we have $p = \Phi\left(\frac{L-\mu}{\sigma}\right)$, $\hat{p} = \Phi\left(\frac{L-\overline{X}}{S}\right)$, \hat{p} is the same as in (2) with $a = 0.5 \left[1 + \frac{\sqrt{n}\left(L - \overline{X}\right)}{\left(n - 1\right)S^*} \right].$

Example (theoretical one, the idea taken from Bowker and Lieberman 1959, p.57:

The clearance between the external shaft diameter and the internal bearing diameter can be assumed to be normally distributed. The minimum permissible clearance is 0.005 inches.

For a random sample of 5 pairs of shaft and mating bearing we get the following measurements of clearance (in inches): 0.0080, 0.0079, 0.0140, 0.0081, 0.0094. We have

 $\overline{X} = 0,00948$, $S \approx 0,002325$, $S^* \approx 0,002599$, a = 0,01828 so $\hat{p} = 0,027$ and $\hat{\hat{p}} = 0.004$.

Several authors have compared \hat{p} and $\hat{\hat{p}}$ [Zacks and Eden 1966, Brown and Rutemiller 1973, Gertsbakh and Winterbottom 1991] taking into consideration their MSE (mean squared error) and bias of \hat{p} . It turns out for example that, for $p \approx 0.05$, \hat{p} is nearly unbiased.

 I_a

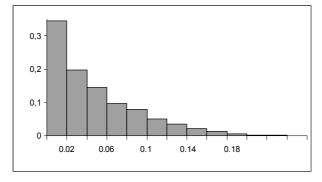


Fig. 1. The histogram for \hat{p} , n = 10, p = 0.05

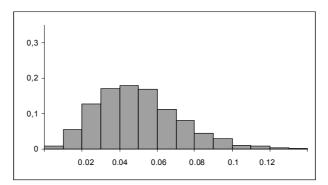


Fig. 3. The histogram for \hat{p} , n = 50, p = 0.05



Fig. 2. The histogram for \hat{p} , n = 10, p = 0.05

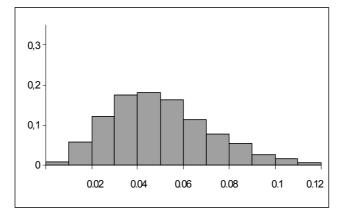
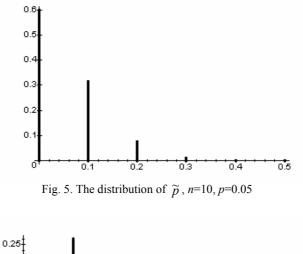
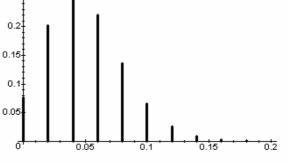
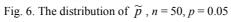


Fig. 4. The histogram for $\hat{\hat{p}}$, n = 50, p = 0.05







Of course, MSE does not say everything about the distribution. To check whether the distributions of \hat{p} and $\hat{\hat{p}}$ differ much or not, some simulations were done.

For n = 10 and 50, p = 0.05 five thousands random samples from standard normal distribution were generated and \hat{p} and \hat{p} were computed (with $L = \Phi^{-1}(1-p)$). Their histograms are presented in Figures 1,2,3 and 4. They can be compared with the distribution of \tilde{p} given in the Figures 5 and 6. Of course $\Pr\left(\tilde{p} = \frac{k}{n}\right) = {n \choose k} p^k (1-p)^{n-k}$.

Of course it can be seen from Fig. 5 that \tilde{p} is completely useless in the case of small sample size.

Table 1 contains the MSE and bias of \hat{p} calculated from simulations. The MSE for \hat{p} was calculated by the formula $MSE = \frac{1}{5000} \sum_{i=1}^{5000} (\hat{p}_i - 0.05)^2$, bias by the formula

 $\frac{1}{5000} \sum_{i=1}^{5000} \hat{p}_i - 0.05$. The MSE for \hat{p} is equal to the variance of \hat{p}_i because \hat{p} is unbi-

ased. From Table 1 it can be seen that \hat{p} is superior to $\hat{\hat{p}}$ when MSE is the criterion.

	p		$\hat{\hat{p}}$	
	MSE	bias	MSE	
n = 10	0.002100	-0.016	0.002662	
n = 50	0.000491	0	0.000495	

Table 1. The MSE's and bias of \hat{p}

ROBUSTNESS OF \hat{p} and $\hat{\hat{p}}$ to deviations from normality

Both estimates \hat{p} and $\hat{\hat{p}}$ can be used when X is normally distributed. But what happens if not? Let us assume $X \sim \mu + \sigma \cdot t_3$, where t_3 is Student's t distribution with three degrees of freedom. In such a case the variance of X is three times larger than under normality. Of course now \hat{p} is not the best unbiased estimator and \hat{p} is not the maximum likelihood one.

What are their properties? How much worse are they? To answer these questions 5000 samples of size n = 10 and n = 50 were generated in the case p = 0.05.

The Figures 7 and 8 present the histograms of \hat{p} and \hat{p} .

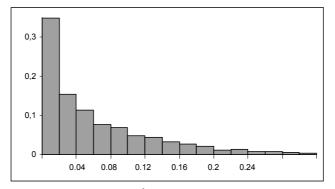


Fig. 7. The histogram for \hat{p} , n = 10, p = 0.05, without normality

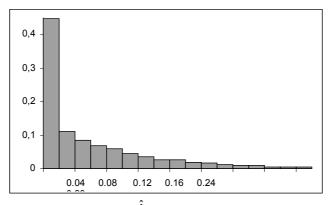


Fig. 8. The histogram for \hat{p} , n = 10, p = 0.05, without normality

	p		$\hat{\hat{p}}$	
	MSE	bias	MSE	bias
n = 10	0.006337	+0.0169	0.01960	+0.0129
n = 50	0.003155	+0.0229	0.01776	+0.0224

Table 2. The MSE's and biases without normality

So, \hat{p} has got less mean square error and can be considered as better than \hat{p} when the probability which is to be estimated is near 0.05.

LARGE SAMPLE SIZE

When sample size *n* is large enough, the estimate \tilde{p} can be used. Let us compare it with \hat{p} . Let us assume we are interested in he probability of attaining the relative error not greater than a certain acceptable value ε . That is let us compare the probabilities

 $\Pr\left(\left|\frac{\hat{p}-p}{p}\right| \le \varepsilon\right)$ and $\Pr\left(\left|\frac{\widetilde{p}-p}{p}\right| \le \varepsilon\right)$. Table 3 gives the results for n = 200, p = 0.05 and $\varepsilon = 0.1, 0.2, 0.3$.

 $\Pr\left(\left|\frac{\hat{p}-p}{p}\right| \le \varepsilon\right)$ is calculated under assumption of normality using normal ap-

proximation to non-central *t* distribution ([5]). $\Pr\left(\left|\frac{\tilde{p}-p}{p}\right| \le \varepsilon\right)$ does not depend on the distribution of *X* and is calculated using binomial probability.

з	0.1	0.2	0.3	
$\Pr\left(\left \frac{\hat{p}-p}{p}\right \le \varepsilon\right)$	0.34	0.63	0.82	
$\Pr\left(\left \frac{\widetilde{p}-p}{p}\right \le \varepsilon\right)$	0.37	0.58	0.75	

Table 3. Comparison of \hat{p} and \tilde{p} , n = 200, p = 0.05

So, when sample size is large enough to use \tilde{p} just **this** estimator should be preferable as it is as good as \hat{p} under normality and, additionally, it is completely independent upon the distribution of X.

REFERENCES

Bowker A.H., Lieberman G.J., 1959: Engineering Statistics. Prentice-Hall Inc.

- Brown G.G., Rutemiller H.C., 1973: The efficiencies of maximum likelihood and minimum variance unbiased estimators of fraction defective in the normal case. Technometrics, 15, 849-855.
- Gertsbakh I., Winterbottom A., 1991: Point and interval estimation of normal tail probabilities. Communications in Statistics-A20 (4), 1497-1514.
- Lieberman G.J., Resnikoff G.J., 1955: Sampling plans for inspection by variables. Journal of the American Statistical Association 50, 457-516.
- Patel J.K., Read C.B. ,1996: Handbook of the normal distribution. 1996, Marcel Dekker inc., New York.
- Zacks S., Eden M., 1966: The efficiences In small samples of the maximum likelihood and best unbiased estimators of reliability functions. Journal of the American Statistical Association, 61, 1033-1051.