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Summary. The processes of convection-diffusion transfer
of the potential of the determining parameter, which can
be mass, energy or momentum pulse, are being
considered. It is shown that the existing methods of
mathematical modelling generally consider the transfer
processes of mass, heat energy and momentum from a
source of infinite cardinality to certain unlimited volume
under the initial conditions of the first, second or third
kind. In addition, it is assumed that the physical transition
zone of the potential is infinitesimally small. At the same
time, very complex mathematical models are obtained,
which are often unfit for practical usage. It is shown that
the rheological transition zone can be a technological
device, for example, a reactor, an evaporation plant, an
absorber, a rectifying column, etc., in which not only
transformation of the main determining parameter occurs,
but also creation of new ones. That is, the process of
transformation under convection-diffusion transfer can be
multistage with simultaneous output (drain) of the
determining parameters — concentration, heat energy,
pressure, etc. For mathematical description of the transfer
processes of the potential the known laws of the transfer
phenomena are used, which are supplemented by the
corresponding laws of drain of the created potential. It is
shown that in this case transformation of the input
potential is described by nonlinear differential equations,
which under certain conditions can be solved analytically.
Key words: potential, transfer, transformation, drain,
model.

INTRODUCTION

The study and methods of solving differential
equations describing the transfer phenomena are given
considerable attention in a large number of papers in
mathematical physics [1-4]. In all cases, the basic transfer
laws of heat (the Fourier law), mass (Fick’s laws) and
momentum (Newton’s law) were taken as a basis. In
addition, it was believed that transfer of heat, mass and
momentum is carried out from a source to a certain
medium either only diffusively or convectively, or in a
mixed way, i.e. convection-diffusion under various initial
and boundary conditions [5]. In addition, it was assumed
that the potential of heat, mass and momentum of the
source is infinite, and the medium is unlimited. In the
simplest case, the transfer processes of the potential of

heat, mass, and momentum pulse are described by the
following differential equations [7-11]:

- for the diffusion transfer flow with constant velocity
of the potential:

20ls0), ) Fole0)

50 e 0; 1)

- for the convection-diffusion transfer flow with
constant velocity of the potential:
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- for the convection-diffusion transfer flow with
variable velocity of the potential to the medium without
acceleration:
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- for the convection-diffusion transfer flow with

variable velocity of the potential from the source to the
medium with acceleration:
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where: (p(x,@) - the transfer potential of heat, mass, and
momentum pulse along the spatial coordinate x and time
0, z,- time constant of the potential transfer from the
source to the medium, D, - the transfer coefficient of the

transfer potential, v(x,6) - variable velocity of the

transfer convection flow into the medium.

As it is noted in [12], equations (1) — (4) are fair
under the condition that velocity of the potential flow
transfer from the source to the medium is unlimited.
Many scientists [12, 13] call this condition a “paradox”
and offer their options for solving it. In fact, equations (1)
— (4) are the equations of balance of the potential, which
is transferred with unlimited velocity from one medium
with infinite potential to another medium, which has
infinite volume. As a rule, for the analytical solution of
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such equations, various assumptions, simplifications and
approximations were used; it allowed these equations to
be reduced to a form that made it possible to describe
such processes by analytic equations [14-15].

ANALYSIS OF PUBLICATIONS

When studying the processes of heat conduction, it
was assumed that there were no heat sources, or they had
unlimited power. In the scientific literature, it is rarely
recalled that there is output (drain) of mass or energy, and
nothing was said about flow velocity, its nature and
parameters that affect this drain. Methods of mathematical
physics, namely, methods of integral transformations
allow solving a relatively narrow range of problems in the
transfer theory [16-18]. When considering the systems of
differential equations with very general boundary
conditions, precise methods of solving face great
difficulties, which become even greater when considering
nonlinear problems. Formally, all the problems of the
transfer phenomena are non-linear, since they contain
parameters or gradients that are also functions of the
transfer parameters, for example, dependence of the heat
conductivity coefficient on the temperature, the molecular
diffusion coefficient on concentration and the
temperature, etc. In such cases, problems of the transfer
phenomena are solved by numerical methods. At present,
the most common method of the approximate solution of
nonlinear equations of the transfer phenomena is the finite
difference method [19, 20], which is also called the grid
method. As it is shown in [12], the grid method does not
give any unambiguity of solution of nonlinear differential
equations. And formal transition to the equation in finite
differences can automatically lead to loss of one or more
solutions of the nonlinear equation. The finite difference
method is based on replacement of derivatives by their
approximate values, which are expressed by differences in
values of the function at some discrete points — the grid
nodes. As a result of such transformations, the differential
equation is replaced by an equivalent relation in finite
differences, the solution of which reduces to performing
simple algebraic operations. The main drawbacks of this
method are that the solution can not be presented in the
analytical form. In most cases, the problem of this or that
transport phenomenon reduces to the Fourier, Fick and
Newton differential equations, which have the following
general form [21, 22]:
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where: U - the determining parameter (temperature,
concentration, density, kinematic viscosity), X- the
transfer spatial coordinate, & - the transfer tim, K - the
transfer coefficient (the coefficient of thermal diffusivity,
diffusion, viscosity).

In this case, the following conditions [2, 3, 5, 23] are
imposed on these equations:

1. The boundary conditions of the first kind:
0>0, -0 < x<+0,U(0,6)=U, =const,U(x,0)=Uc,

U(+2,0) _oU(-0,6)
X X

=0 (the boundary conditions

can be supplemented depending on the problem being
researched). Then the solution of equation (5) will be
described by the following Gaussian error function;

U(x,0)-U,
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2. The boundary conditions of the second kind:
6>0, U(x,0)=Uy=const, 0<x<+w, U(x,0)=U,
K w+ qc =0 M =0and some others,
OX OX
which depend on the problem. The solution of equation
(5) with the boundary conditions of the second kind has
the form:
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where: ¢ - the transfer source, Kp- the conductivity
coefficient (for example, heat conductivity, mass
conductivity).

3. The boundary conditions of the third kind: 8 >0,

au(0,0) .
X

0<x <+, ky k,[Uc-U(0,0)]=0,

U(,0)=U,, U(x,0)=U, =const, =0

l
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where: Kk, - the emission coefficient (heat emission, mass
emission), U - the initial value of the determining

parameter.
The solution of equation (5) with the boundary
conditions of the third kind has the following form:

U(x, 0)—U0 _ x| N2 *
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where: H =k, /k; .
The general diffusion model with presence of the
chemical transformation is described in this form [12]:

%+WVQ+V(D0VQ)= - (Q), ©)

where: Q - substance concentration in the flow, W -
average flow velocity of the phase, € - the diffusion
transfer time, D, - the diffusion coefficient, Kp-
constant of the chemical transformation (reaction)
velocity, f(Q) - a function that depends on substance

concentration in the flow.

If the diffusion process passes in one direction, for
example, in direction X, then equation (9) is reduced to
the following:
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where: - the chemical transformation time.

Equation (10) is referred to nonlinear, and as it is
shown in [5, 12, 13], it is practically impossible to obtain
its analytical solution in a general form. If we compare
equations (5) and (10), we can see that when:

w aQ(x,0)
oX
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we arrive at Fick equation of the first kind. Equation (11)
is nonlinear, as it functionally depends on three variables:
the spatial coordinate X, the time of mass transfer &,
and the chemical transformation time t . If we assume that
O~t and f[Q(x,t)]=Q(xt), then equation (11) is
reduced to the following form:

w aQ(x,a)+

R Q(xt)=0.

(12)

Equation (8) describes the process of free transfer of
concentration Q(x,t) through the spatial coordinate X at
the current time t of the chemical transformation. If &=t

, and x=wt, then under the initial conditions
8Q(o0,1) _ _
Q(0,t)=Q, and Foa— 0 the solution of equation (8)
X
is:

Q,(t)=Q(x, O) exp(—kpt).

Thus, in fact, equality (13) is the analytical solution
of nonlinear equation (10), provided that change in the
mass transfer time is equal to change in the chemical
transformation time. Equation (13) shows that change in
concentration of the reacting components along the
coordinate x is carried out according to the exponential
law and depends on the coefficient of the chemical
transformation velocity and the flow velocity of this
transformation. Equation (12) shows how concentration
Q of the reacting components varies depending on the

time t and the spatial coordinate x . Since for the single-
stage reaction processes concentration of the newly
created (output) substance is proportional to concentration
of the reacting components, output concentration of the
chemical transformation will be described by the
following equation:

aQ,(t)
Pooat

(13)

+Q,(t)=Q(x,0), (14)

where: 7,=1/kp - time constant of the chemical
transformation, Qp(t) - concentration of the output
substance during the chemical transformation time t

Q(x, 9) - concentration of the reacting components in the
reaction mass.

When Q(x,6)=oconst the rate of change in output
concentration is described by the following equation:
*Q,(t) Q,(t)
7, >+
ot ot

Taking into account (15), equation (10) is reduced to
the following form:

=k, F[Q(x.t)]. (15)
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Thus, from the viewpoint of rheological

transformations theory, we can say that the left-hand side
of equation (16) describes velocity of the convection-
diffusion transfer process by a certain flow with

concentration Q(x,é?) of the reacting components in the
reaction zone (rheological transformation zone), and the
right-hand side is velocity of the output process (drain) of
concentration Qp(t) of the newly created product from
this zone. Equation (16) is non-linear, as it contains the
following variables: concentration Q of the input
material flow, which in its turn depends on the variable
spatial coordinate x and its transfer time to the
rheological transformation zone €, and concentration
Qp(t) of the created product, which varies with the output
(drain) time of the material flow from this zone.
Proceeding from this, it is possible to assert that in

equation (10) the unknown function of the chemical
transformation is the derivative of the aperiodic function

of the first order, that is,
o(oQ (t
(L()w,,(t)],

ko fQMx.t)]=7, = a

or
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As it is shown in [23], in the rheological transfer zone
two and more stage transformations are possible, which
can occur both according to the aperiodic and oscillatory
laws.

3. PURPOSE AND RESEARCH TASK STATEMENT

The purpose of this paper is to justify the methods for
solving nonlinear problems of mass, energy, and
momentum transfer phenomena with the help of which it
is possible to obtain mathematical models of the complex
nonlinear transfer phenomena in the analytical form
available for use in practical problems of control of
technological devices. To achieve this goal, it is necessary
to perform the following tasks:

- to justify the possibility of using the Dirac’s integral
impulse delta function to describe the transfer processes
of mass, energy and momentum pulse;

- to justify application of the zero-gradient method
for solving non-linear problems of transfer of mass,



14 Y. Stentsel, O. Porkuian, K. Litvinov

energy, and momentum pulse to obtain the
mathematical models of various processes of transfer
phenomena in the analytical form.

In the further study of the transfer phenomena on the
basis of the rheological transitions theory, we will derive
from the transfer condition for concentration, energy, and
momentum potential. We consider potential as the
difference in the pulse of mass (concentrations of
substances in solid, liquid and gaseous media), energy
(heat, ultrasonic, electrical) and momentum (mechanical
and material flows). When considering the problems of
the transfer phenomena, we will judge from the fact that
there is an object (reactor, absorber, heat exchanger, etc.),
which is the irreversible rheological transition zone (IRT).
The input flow (material, thermal, electromagnetic or
other) of mass, energy or momentum with the initial
determining parameter, for example, concentration Q,,

temperature T, , amplitude A, or other is supplied to the
input of the object. In the object, there is the irreversible
transformation of the determining parameter up to a
certain current value of it: Q, T, A, creating the
corresponding difference of concentration AQ=Q,-Q,
temperature AT =T, —T , amplitude AA= Ay — A, that is,
the transfer potential, which we will call respectively:
o =AQ, ¢r =AT, @, =AAetc. In the object, as in the
IRT zone the corresponding transformation takes place, as
a result of which a new determining parameter is formed:
concentration of new substance Qp, temperature 7', and

amplitude AP- If under zero initial conditions Qp, =0,
Tp=0 and 4p =0, then potentials of the output flows
will be @py =Qp, @pr =Tp and @p, = Ap respectively.
Potentials ¢p; of the output flows will be called drains of
the i — th determining parameter.

DESCRIPTION OF PROCESSES OF TRANSFER

POTENTIAL DISTRIBUTION

Let the material or energy flow with constant
potential ¢yp; is supplied to a technological object
(apparatus). This flow creates a heterogeneous physical
body (gas, liquid or solid) in the object. Non-uniformity
of distribution of the transfer potential ¢; (F,H) (T - the
direction vector of the transfer flow, & - the transfer time)
leads to deviation from the equilibrium state and is the
cause of the transfer flow due to the diffusion, convection

or convection-diffusion flow. In this field macroscopic
motion of the substance is observed, which is

characterized by the field of velocities V(F,0). Sources

for drain of the transfer potential are characterized by
volumetric density [24]. The transfer of the potential

?; (F,@) through the surface of the volume consists of
transfer due to substance macroscopic motion and flow q
[13]. Thus, equation for the total flow F can be presented
as: IE=gW+G. In the integral form, the condition for

preserving the potential for the given volume V will be as
follows:

| o0lr.0) = {Fdf + [,V , (18)
a6 Sy

\

where: S - the volume surface; df =ndo - the surface

element; M- the unit vector of the element; df , Yp-

drain velocity of the transformed potential.
For a certain volume, transfer equation (18) is
reduced to the following form:

op . _ -
— +divigv )=—divg—y, =0
~g T aVle7)=—dvg 7,

If in the considered volume physicochemical
processes take place that are the consequence of
interaction of two or more substances, then the potential
transfer equation takes the following form:

(19)
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where: Dj - the effective diffusion coefficient of the i—

th substance; V - the linear operator.

If the potential is transferred in one spatial direction
x, then equation (20) simplifies and takes the form:

2
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Potential drain is nothing but a certain function,
depending on the way of output of the transformation
result, that is, the potential of the main determining
parameter of the output flow from the considered volume
and the potentials of other determining parameters that are
interrelated with the main one. For more detailed
understanding of the essence of equation (21), we
consider examples of transfer of the material flow
concentration in some technological devices.

Example 1. Let the flow of hot liquid with
temperature 7,, and the flow of cold liquid with

temperature 7, flow into the liquid mixer
simultaneously. As a result of mixing of two flows, a
liquid flow with temperature 7', is formed. When mixing

1)

two flows, the temperature of the flow of hot liquid
decreases, and of the cold one — increases. As a result, an

output flow of liquid with temperature 7', is formed. If

cold liquid was supplied into the mixer first, the
temperature at the mixer output will increase. If hot liquid
was supplied into the mixer first, the output temperature
will decrease. However, in both cases, the temperature
will change according to the same laws. Thus, in the
mixer, as a control object, there is a certain volume in
which temperature 7,, and T, transformation takes

place. This transformation occurs due to the convection-
diffusion process between two input flows. Such a
process is described by the well-known Fourier heat
energy transfer equations. If mixing proceeds in the
direction of a certain spatial coordinate x, such a process
is described by the left-hand side of equation (21). This
conditional liquid volume, in which heat transfer from
one flow to another occurs, is called the rheological
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transition zone (RTZ). As mentioned above, a new flow
with temperature 7', is formed in this zone. If the mixing
process in the RTZ is determined by the initial
temperatures of the input flows, the effective coefficient

of diffusion D; and the linear mixing rate v; of the

flows, then the output flow is determined only by the
change rate of temperature 7',, that is, time constant.
Since the temperature of the output flow can only increase
to temperature 7, or decrease only to temperature T, ,
then the heating (or cooling) process will follow the
aperiodic law. If the initial temperature is 7,,, the

process of heating the liquid output flow will be described
by the following equation:

T,(t) =To[l—exp(t/z, )] (22)

where: t - the current time of liquid heating: 7, - heating
constant of the output flow.
If the initial temperature is T,, , the process of

cooling of the output flow will be described by the
following equation:

T, =To.exp(t/,).

Time constants in both cases will be the same. At a
certain given volume V of liquids mixing and the flow
rate F, of the output flow, the time constant can be

(23)

found by the following formula: , =V/Fp. It is not

difficult to see from equations (22) and (23) that the
output rate of the output flow with temperature 7, (t) is

described by the following differential equation:

7pi(t)= T

Thus, the process of rheological transformation of the
temperature of the input flows into the temperature of the
output flow will be described by the following nonlinear
differential equation:

d?7,(t) N dr, (t)
dt? dt

; (24)

0pi(x,0) | Opi(x0)  0p;(x,6)
o0 T el 0T
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where: gop(t)- change in the output temperature potential
intime t.

Example 2. The fresh solution for evaporation with
concentration Qp; and superheated steam to ensure the

temperature balance of the evaporation process with
temperature Ty; are supplied to the evaporation plant
under vacuum. The evaporated solution is output from the
plant with concentration Q,,. As it is shown in [25], the

process of evaporation of liquid solutions has four
variable output coordinates, which include concentration
of the evaporated solution, the boiling temperature of the

solution, the pressure of the secondary steam, and the
solution level in the bottom of the plant. All output
coordinates are interrelated and in the first approximation
they are described by differential equations of the fourth
order in the following form:

4 . 3 . 2 .
74‘11 d ¢T(t)+r33 d (”psl(t)_H_zz d (p[)zl(t)+
dt dt dt (26)
deyi(t) ,
7 dptl +(0pi(t)= Koiji

where: 7;, 7,, 73, T, - CONversion time constants; ¢;-

potential of the
transformation equivalent coefficient; ¢;; - potential of

i—th output coordinate; Kk;

the i—th input coordinate.
If the processes of transfer of all input flows are
characterized by a convective component moving with

velocity vj;, then equation (20) takes the following form:
09 (x,0 *pii(x,0 09 (x,0
¢Jz(x )+Dj (ojz(zx )+Vji (/)jl<x ):
00 ox oX
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In this case, the zone of rheological transitions, and,
correspondingly, transformations, will be the evaporation
plant. Drain for concentration of the evaporated solution
is consumption of bottom liquid; for the temperature —
consumption of the secondary steam and bottom liquid,;
for pressure of the secondary steam — consumption of its
condensate and still bottom; for the liquid level in the
plant - consumption of the fresh solution and bottom
liquid. Since all output coordinates of the evaporation
plant are interrelated, each corresponding channel will be
described by the equation of type (27). Since the
evaporation plant belongs to a multidimensional
technological control object with two input determining
flows — the fresh solution and the primary steam, then its
output coordinates can be divided into two groups of
determining channels according to the principle of
influence of the input flows on them:

group 1:

- concentration of the evaporated solution -
consumption of the fresh solution;

group 2:

- the boiling point of the fresh solution — the primary
steam consumption;

- the evaporated solution level — the primary steam
consumption;

- the secondary steam pressure — the primary steam
consumption.

A characteristic feature is that between the output
parameters of group 1 and group 2 there is generally an
extremum that can be used to optimize the control
process. Proceeding from the above, the evaporation plant
can be described by a system of the following nonlinear
differential equations [25]:

- by concentration of the target component in still
bottom:
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M+ Dc M+
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(28)

- by the boiling point of the solution in the plant still:

aTHa (;"9)+ D, 8Ty (;(,19) .
Mu(x9) , & dUT
Vii o ppz T
- by the level of the evaporated solution in the plant
still:
2
aTH@(;’S)JF D, d TH(;,S)
OX (30)
AT (x, 9) & d™MLm (t)
Vi o lezo LT g
- by the secondary steam pressure:
2
aT%(;,9)+ D, d TH(;,S)
Ty (%, 9) ax“ 4R, @) ey
% o T
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During the study of multidimensional control objects,
like evaporation plants, absorption and rectification
columns, reactors, it is considered that some output
parameters can be stabilized by changing the output
flows. For example, the level is stabilized by changing
consumption of the still bottom, the secondary steam
pressure — by its condensation with the refrigerant, the
boiling point - by change in the primary steam
consumption. Change in the temperature of the primary
steam and concentration of the target component in the
fresh solution in evaporation plants and rectification
columns are generally assumed to be influential
parameters.

Thus, in presence of n interconnected coordinates
that are formed during transfer of the input potential of
the determining parameter, the right-hand side of equation
(27) will be described by the differential equation of the
N -th order. The objective of research is to find the
analytical solution of the obtained nonlinear differential
equation. In most practical cases, it can be assumed that
convection-diffusion transfer time & is equal to drain
time t, and velocity of the potential transfer process is

vj; = 0x/ot. Then, having determined that x? =v12i8t2 ,
equation (25) takes the form:

o¢;(t)  B; (1) 2g;(t) _
at vf, at? a

. (32)
d?p,(t) , 4o,

"dt? dt

If the potential of the output flow is proportional to
the potential of the determining parameter of the input

flow, then having defined that ¢; (t)= kg, (1), we arrive
at the following linear differential equation

do, ()

T,
T dt

+9,() =Kkngoj (33)

where 7 = (k D; +z-HvJ,)/vJ?i(kH+2) - transfer time

constant; Ky - the transfer coefficient; ¢y; - the nominal

potential of the determining parameter of the input flow.

Under initial zero conditions, we obtain the following
mathematical model of the transfer process in the
following analytical form:

V2 (ky +2)

el (34)
kH DJ + Tijgi J

If the transfer time of the potential is not equal to the
drain time, then the process of rheological transformation
is clearly nonlinear and for the analytical solution of such
problems it is necessary to use other boundary conditions
and other methods that will be described in the following
publications.

@, (t) =kp 1—exp(—t

CONCLUSIONS

When transferring the potential of mass, energy and
momentum pulse, their balance must be struck, that is, the
amount of the potential of the determining parameter that
came with the input flow into a certain medium should be
equal to the amount of the potential of this parameter that
is created in this medium.

1. The right-hand side of this equation describes the
process of transferring the potential from the source of the
determining parameter (mass, energy, momentum) to the
medium and shows how this transfer is carried out - by
diffusion, convection or convection-diffusion.

2. If we multiply this equation by certain transfer
time, then we arrive at the equation of balance of the
potential of the determining parameter (mass, energy and
momentum), the right-hand side of which describes how
much of this parameter was formed during transformation
of the input determining parameter.

3. It is shown that for transformation of the input
determining parameter, some space is needed, which is
called the rheological transformation zone. In this zone,
one or several transformations can take place
simultaneously,  which  are interrelated.  Such
transformations are described by nonlinear equations of
the second and higher orders, which in general form do
not have a solution. However, for some potential transfer
processes, such nonlinear differential equations can have
an analytical and fairly simple solution.

4. The methods for solving such equations will be
described in subsequent publications.
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MATEMATHUYECKUE MOJAEJIY PEOJIOTMYECKUX
[IPEOBPA3OBAHUIA [TPU IIEPEHOCE IIOTEHIIAJIA
HNMITYJIbCA MACCEBHI, SHEPTU 11 KOJIMYECTBA
JBIKEHUA

U. Cmenyenv, O. [lopxyan, K. Jlumeunos

AHHOTAIMSA. PaccmarpuBarorcs MPOIIECCHI
1 (y3MOHHO-KOHBEKIIMOHHOTO IIEpeHOca IOTEHIHalIa
OTIpENIeJIAIONIeT0 IapamMeTpa, KOTOPBIM MOXET OBITh
HUMITYJIBC MAacCChbl, SHCPIrUU WM KOJIMYECTBA ABUIKCHUS.
IToxazano, 4TO CYLIECTBYIOLIUE METOJIbI
MaTeMaTHYECKOI0  MOJENHPOBaHMs, KakK  IPaBHIIO,
paccMaTpHBaIOT MPOLECCHl MEPeHOCa MAacChl, TETIIOBON
SHEPrUM W KOJNHMYECTBA JBIDKCHHS OT HCTOYHHKA
0ecKOHEUHOH MOIITHOCTH K HEKOTOPOMY
HEOTPaHHYCHHOMY OOBEMY TIPH HAYAIBHBIX YCIOBHIX
IIepBOTO, BTOPOTO WM TpeThero poxma. Kpome ToroO,
NIPUHUMAETCS,, YTO 30Ha (HU3MYECKOTO  IIepexoja
noTeHuata oeckoHeuHo maias. [Ipu 3ToM mosrydarorcs
OUYCHb CIIOKHBIE MaTeMaTHYECKHEe MOJENH, 3a4acTyio
HETIPUTOJHBIC K MMPaKTUYECKOMY HCIIOJIb30BAHUIO.
IToxa3aHo, 4TO 30HON PEOJIOrMUECKOIrO MEPEX0Ja MOXKET
OBITh TEXHOJIOTMYECKUH ammapar, HampuMmep, pPeaxkTop,
BEIIApHasi yYCTAaHOBKa, abcopOep, peKTU(HUKALNOHHAS
KOJIOHHa ¥ Jp., B KOTOPBIX IIPOUCXOJHUT HE TOJBKO
IIpeoOpa3oBaHNe OCHOBHOT'O OMPE/IEISIONIEro apamMeTpa,
HO U CO3IaHue HOBBIX. T0-€CcTh Ipolecc Npeodpa3oBaHus
npu 1 Hy3HOHHO-KOHBEKIIHOHHOM IIEPEHOCE MOXKET
ObITh MHOTOCTAIMHHBIM C OJHOBPEMEHHBIM BBIXOJOM
(cTokOM) OmpeneNndouX NapaMeTpoB — KOHIIEHTPAIUH,
TEII0BOM JHEPIuy, JIaBJICHUS A Jp. s
MaTeMaTHYECKOTO  ONMCAaHUS  IPOLECCOB  MepeHoca
MOTEHIIMAJIa HUCHOJIB3YIOTCA M3BECTHBIC 3aKOHBI SIBIICHUM
IepeHoca, KOTOpBIE JIOTIONHEHBl COOTBETCTBYIOUTUMH
3aKOHaMHM CTOKa CO3JaHHOTO MoTeHnuana. Ilokasano, 94To
B 3TOM cCllyyae NpeoOpa3oBaHUsl BXOJHOTO IIOTEHIIHANA
OIMCHIBAETCS  HENMHEHHBIMH  audQepeHIaIbHBIMU
YPaBHEHMSAMH, KOTOPBIE IpPHU OINpPEJECNICHHBIX YCIOBUIX
MOTYT OBITH pEIICHBI aHATUTHYECKH.
KioueBnbie caoBAa: HNOTEHIMAT,
peoOpa3oBaHKe, CTOK, MOJIEIb.

HepeHoc,






