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Summary. The processes of convection-diffusion transfer 

of the potential of the determining parameter, which can 

be mass, energy or momentum pulse, are being 

considered. It is shown that the existing methods of 

mathematical modelling generally consider the transfer 

processes of mass, heat energy and momentum from a 

source of infinite cardinality to certain unlimited volume 

under the initial conditions of the first, second or third 

kind. In addition, it is assumed that the physical transition 

zone of the potential is infinitesimally small. At the same 

time, very complex mathematical models are obtained, 

which are often unfit for practical usage. It is shown that 

the rheological transition zone can be a technological 

device, for example, a reactor, an evaporation plant, an 

absorber, a rectifying column, etc., in which not only 

transformation of the main determining parameter occurs, 

but also creation of new ones. That is, the process of 

transformation under convection-diffusion transfer can be 

multistage with simultaneous output (drain) of the 

determining parameters – concentration, heat energy, 

pressure, etc. For mathematical description of the transfer 

processes of the potential the known laws of the transfer 

phenomena are used, which are supplemented by the 

corresponding laws of drain of the created potential. It is 

shown that in this case transformation of the input 

potential is described by nonlinear differential equations, 

which under certain conditions can be solved analytically. 

Key words: potential, transfer, transformation, drain, 

model. 

INTRODUCTION 

The study and methods of solving differential 

equations describing the transfer phenomena are given 

considerable attention in a large number of papers in 

mathematical physics [1-4]. In all cases, the basic transfer 

laws of heat (the Fourier law), mass (Fick’s laws) and 

momentum (Newton’s law) were taken as a basis. In 

addition, it was believed that transfer of heat, mass and 

momentum is carried out from a source to a certain 

medium either only diffusively or convectively, or in a 

mixed way, i.e. convection-diffusion under various initial 

and boundary conditions [5]. In addition, it was assumed 

that the potential of heat, mass and momentum of the 

source is infinite, and the medium is unlimited. In the 

simplest case, the transfer processes of the potential of 

heat, mass, and momentum pulse are described by the 

following differential equations [7-11]: 

- for the diffusion transfer flow with constant velocity 

of the potential: 
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- for the convection-diffusion transfer flow with 

constant velocity of the potential: 
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- for the convection-diffusion transfer flow with 

variable velocity of the potential to the medium without 

acceleration: 
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- for the convection-diffusion transfer flow with 

variable velocity of the potential from the source to the 

medium with acceleration: 
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where:   ,х  - the transfer potential of heat, mass, and 

momentum pulse along the spatial coordinate х and time 

 ,  - time constant of the potential transfer from the 

source to the medium,
 D - the transfer coefficient of the 

transfer potential,  ,xvС  - variable velocity of the 

transfer convection flow into the medium. 

As it is noted in [12], equations (1) – (4) are fair 

under the condition that velocity of the potential flow 

transfer from the source to the medium is unlimited. 

Many scientists [12, 13] call this condition a “paradox” 

and offer their options for solving it. In fact, equations (1) 

– (4) are the equations of balance of the potential, which 

is transferred with unlimited velocity from one medium 

with infinite potential to another medium, which has 

infinite volume. As a rule, for the analytical solution of  
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such equations, various assumptions, simplifications and 

approximations were used; it allowed these equations to 

be reduced to a form that made it possible to describe 

such processes by analytic equations [14-15]. 

ANALYSIS OF PUBLICATIONS 

When studying the processes of heat conduction, it 

was assumed that there were no heat sources, or they had 

unlimited power. In the scientific literature, it is rarely 

recalled that there is output (drain) of mass or energy, and 

nothing was said about flow velocity, its nature and 

parameters that affect this drain. Methods of mathematical 

physics, namely, methods of integral transformations 

allow solving a relatively narrow range of problems in the 

transfer theory [16-18]. When considering the systems of 

differential equations with very general boundary 

conditions, precise methods of solving face great 

difficulties, which become even greater when considering 

nonlinear problems. Formally, all the problems of the 

transfer phenomena are non-linear, since they contain 

parameters or gradients that are also functions of the 

transfer parameters, for example, dependence of the heat 

conductivity coefficient on the temperature, the molecular 

diffusion coefficient on concentration and the 

temperature, etc. In such cases, problems of the transfer 

phenomena are solved by numerical methods. At present, 

the most common method of the approximate solution of 

nonlinear equations of the transfer phenomena is the finite 

difference method [19, 20], which is also called the grid 

method. As it is shown in [12], the grid method does not 

give any unambiguity of solution of nonlinear differential 

equations. And formal transition to the equation in finite 

differences can automatically lead to loss of one or more 

solutions of the nonlinear equation. The finite difference 

method is based on replacement of derivatives by their 

approximate values, which are expressed by differences in 

values of the function at some discrete points – the grid 

nodes. As a result of such transformations, the differential 

equation is replaced by an equivalent relation in finite 

differences, the solution of which reduces to performing 

simple algebraic operations. The main drawbacks of this 

method are that the solution can not be presented in the 

analytical form. In most cases, the problem of this or that 

transport phenomenon reduces to the Fourier, Fick and 

Newton differential equations, which have the following 

general form [21, 22]: 
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where: U - the determining parameter (temperature, 

concentration, density, kinematic viscosity), x - the 

transfer spatial coordinate,  - the transfer tim, K - the 

transfer coefficient (the coefficient of thermal diffusivity, 

diffusion, viscosity). 

In this case, the following conditions [2, 3, 5, 23] are 

imposed on these equations: 

1. The boundary conditions of the first kind: 

 х,0 ,   constUU  0,0  ,   CUхU 0, , 
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can be supplemented depending on the problem being 

researched). Then the solution of equation (5) will be 

described by the following Gaussian error function: 
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2. The boundary conditions of the second kind:
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which depend on the problem. The solution of equation 

(5) with the boundary conditions of the second kind has 

the form: 
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where: Cq - the transfer source, k - the conductivity 

coefficient (for example, heat conductivity, mass 

conductivity). 

3. The boundary conditions of the third kind: ,0
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where: k - the emission coefficient (heat emission, mass 

emission), CU  - the initial value of the determining 

parameter.  

The solution of equation (5) with the boundary 

conditions of the third kind has the following form: 
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where:  kkH / . 

The general diffusion model with presence of the 

chemical transformation is described in this form [12]: 
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where: Q  - substance concentration in the flow, w - 

average flow velocity of the phase,  - the diffusion 

transfer time, D  - the diffusion coefficient, Pk - 

constant of the chemical transformation (reaction) 

velocity,  Qf  - a function that depends on substance 

concentration in the flow. 

If the diffusion process passes in one direction, for 

example, in direction x , then equation (9) is reduced to 

the following: 



MATHEMATICAL MODELS OF RHEOLOGICAL TRANSFORMATIONS DURING …                   13 

   

 
  tхQfk

х

хQ
w

х

хQ
D

хQ

P ,
,

,,
2

2

























,                 (10) 

where: t - the chemical transformation time. 

 

Equation (10) is referred to nonlinear, and as it is 

shown in [5, 12, 13], it is practically impossible to obtain 

its analytical solution in a general form. If we compare 

equations (5) and (10), we can see that when: 
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we arrive at Fick equation of the first kind. Equation (11) 

is nonlinear, as it functionally depends on three variables: 

the spatial coordinate x , the time of mass transfer  , 

and the chemical transformation time t . If we assume that 

t  and     tхQtхQf ,,  , then equation (11) is 

reduced to the following form: 
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Equation (8) describes the process of free transfer of 

concentration  tхQ ,  through the spatial coordinate х at 

the current time t  of the chemical transformation. If t
, and wtх  , then under the initial conditions 
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   tkxQtQ Pp  exp),(  .                (13) 

Thus, in fact, equality (13) is the analytical solution 

of nonlinear equation (10), provided that change in the 

mass transfer time is equal to change in the chemical 

transformation time. Equation (13) shows that change in 

concentration of the reacting components along the 

coordinate х  is carried out according to the exponential 

law and depends on the coefficient of the chemical 

transformation velocity and the flow velocity of this 

transformation. Equation (12) shows how concentration

Q  of the reacting components varies depending on the 

time t  and the spatial coordinate х . Since for the single-

stage reaction processes concentration of the newly 

created (output) substance is proportional to concentration 

of the reacting components, output concentration of the 

chemical transformation will be described by the 

following equation: 
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where: Pр k/1  - time constant of the chemical 

transformation,  tQр  - concentration of the output 

substance during the chemical transformation time t , 

 ,хQ  - concentration of the reacting components in the 

reaction mass.  

When   constхQ ,  the rate of change in output 

concentration is described by the following equation: 
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Taking into account (15), equation (10) is reduced to 

the following form: 
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Thus, from the viewpoint of rheological 

transformations theory, we can say that the left-hand side 

of equation (16) describes velocity of the convection-

diffusion transfer process by a certain flow with 

concentration  ,хQ  of the reacting components in the 

reaction zone (rheological transformation zone), and the 

right-hand side is velocity of the output process (drain) of 

concentration  tQр  of the newly created product from 

this zone. Equation (16) is non-linear, as it contains the 

following variables: concentration Q  of the input 

material flow, which in its turn depends on the variable 

spatial coordinate х  and its transfer time to the 

rheological transformation zone  , and concentration 

 tQр  of the created product, which varies with the output 

(drain) time of the material flow from this zone. 

Proceeding from this, it is possible to assert that in 

equation (10) the unknown function of the chemical 

transformation is the derivative of the aperiodic function 

of the first order, that is, 
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As it is shown in [23], in the rheological transfer zone 

two and more stage transformations are possible, which 

can occur both according to the aperiodic and oscillatory 

laws. 

3. PURPOSE AND RESEARCH TASK STATEMENT 

The purpose of this paper is to justify the methods for 

solving nonlinear problems of mass, energy, and 

momentum transfer phenomena with the help of which it 

is possible to obtain mathematical models of the complex 

nonlinear transfer phenomena in the analytical form 

available for use in practical problems of control of 

technological devices. To achieve this goal, it is necessary 

to perform the following tasks: 

- to justify the possibility of using the Dirac’s integral 

impulse delta function to describe the transfer processes 

of mass, energy and momentum pulse; 

- to justify application of the zero-gradient method 

for solving non-linear problems of transfer of mass,  
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energy, and momentum pulse to obtain the 

mathematical models of various processes of transfer 

phenomena in the analytical form.  

In the further study of the transfer phenomena on the 

basis of the rheological transitions theory, we will derive 

from the transfer condition for concentration, energy, and 

momentum potential. We consider potential as the 

difference in the pulse of mass (concentrations of 

substances in solid, liquid and gaseous media), energy 

(heat, ultrasonic, electrical) and momentum (mechanical 

and material flows). When considering the problems of 

the transfer phenomena, we will judge from the fact that 

there is an object (reactor, absorber, heat exchanger, etc.), 

which is the irreversible rheological transition zone (IRT). 

The input flow (material, thermal, electromagnetic or 

other) of mass, energy or momentum with the initial 

determining parameter, for example, concentration 0Q , 

temperature 0Т , amplitude 0А or other is supplied to the 

input of the object. In the object, there is the irreversible 

transformation of the determining parameter up to a 

certain current value of it: Q , Т , А , creating the 

corresponding difference of concentration QQQ  0 , 

temperature TTT  0 , amplitude AAA  0 , that is, 

the transfer potential, which we will call respectively: 

QQ  , TT  , AA  etc. In the object, as in the 

IRT zone the corresponding transformation takes place, as 

a result of which a new determining parameter is formed: 

concentration of new substance РQ , temperature РТ , and 

amplitude РА . If under zero initial conditions 0РQ , 

0РТ  and 0РА , then potentials of the output flows 

will be РРQ Q , РРТ Т  and РРА А  respectively. 

Potentials Рі  of the output flows will be called drains of 

the і th determining parameter. 

DESCRIPTION OF PROCESSES OF TRANSFER 

POTENTIAL DISTRIBUTION 

Let the material or energy flow with constant 

potential j0  is supplied to a technological object 

(apparatus). This flow creates a heterogeneous physical 

body (gas, liquid or solid) in the object. Non-uniformity 

of distribution of the transfer potential   ,rj  ( r - the 

direction vector of the transfer flow,  - the transfer time) 

leads to deviation from the equilibrium state and is the 

cause of the transfer flow due to the diffusion, convection 

or convection-diffusion flow. In this field macroscopic 

motion of the substance is observed, which is 

characterized by the field of velocities  ,rv . Sources 

for drain of the transfer potential are characterized by 

volumetric density [24]. The transfer of the potential

  ,rj  through the surface of the volume consists of 

transfer due to substance macroscopic motion and flow q  

[13]. Thus, equation for the total flow F can be presented 

as: qvF  . In the integral form, the condition for 

preserving the potential for the given volume V will be as 

follows: 
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where: S - the volume surface; dnfd  - the surface 

element; n - the unit vector of the element; fd , р - 

drain velocity of the transformed potential. 

For a certain volume, transfer equation (18) is 

reduced to the following form: 
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If in the considered volume physicochemical 

processes take place that are the consequence of 

interaction of two or more substances, then the potential 

transfer equation takes the following form: 
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where: jD - the effective diffusion coefficient of the і

th substance;  - the linear operator. 

If the potential is transferred in one spatial direction 

х, then equation (20) simplifies and takes the form: 
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Potential drain is nothing but a certain function, 

depending on the way of output of the transformation 

result, that is, the potential of the main determining 

parameter of the output flow from the considered volume 

and the potentials of other determining parameters that are 

interrelated with the main one. For more detailed 

understanding of the essence of equation (21), we 

consider examples of transfer of the material flow 

concentration in some technological devices. 

Example 1. Let the flow of hot liquid with 

temperature гТ0  and the flow of cold liquid with 

temperature хТ0  flow into the liquid mixer 

simultaneously. As a result of mixing of two flows, a 

liquid flow with temperature рТ  is formed. When mixing 

two flows, the temperature of the flow of hot liquid 

decreases, and of the cold one – increases. As a result, an 

output flow of liquid with temperature рТ  is formed. If 

cold liquid was supplied into the mixer first, the 

temperature at the mixer output will increase. If hot liquid 

was supplied into the mixer first, the output temperature 

will decrease. However, in both cases, the temperature 

will change according to the same laws. Thus, in the 

mixer, as a control object, there is a certain volume in 

which temperature гТ0  and хТ0  transformation takes 

place. This transformation occurs due to the convection-

diffusion process between two input flows. Such a 

process is described by the well-known Fourier heat 

energy transfer equations. If mixing proceeds in the 

direction of a certain spatial coordinate х, such a process 

is described by the left-hand side of equation (21). This 

conditional liquid volume, in which heat transfer from 

one flow to another occurs, is called the rheological 



MATHEMATICAL MODELS OF RHEOLOGICAL TRANSFORMATIONS DURING …                   15 

transition zone (RTZ). As mentioned above, a new flow 

with temperature рТ  is formed in this zone. If the mixing 

process in the RTZ is determined by the initial 

temperatures of the input flows, the effective coefficient 

of diffusion jD  and the linear mixing rate jv  of the 

flows, then the output flow is determined only by the 

change rate of temperature рТ , that is, time constant. 

Since the temperature of the output flow can only increase 

to temperature гТ0  or decrease only to temperature хТ0 , 

then the heating (or cooling) process will follow the 

aperiodic law. If the initial temperature is хТ0 , the 

process of heating the liquid output flow will be described 

by the following equation: 

  нxр tTtТ /exp1)( 0                        (22) 

where: t - the current time of liquid heating: н  - heating 

constant of the output flow. 

If the initial temperature is гТ0  , the process of 

cooling of the output flow will be described by the 

following equation: 

 нгр tTtТ /exp)( 0 .                     (23) 

Time constants in both cases will be the same. At a 

certain given volume V  of liquids mixing and the flow 

rate pF  of the output flow, the time constant can be 

found by the following formula: pн FV / . It is not 

difficult to see from equations (22) and (23) that the 

output rate of the output flow with temperature )(tТ р  is 

described by the following differential equation: 
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Thus, the process of rheological transformation of the 

temperature of the input flows into the temperature of the 

output flow will be described by the following nonlinear 

differential equation: 
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where: )(tр - change in the output temperature potential 

in time t . 

Example 2. The fresh solution for evaporation with 

concentration jQ0  and superheated steam to ensure the 

temperature balance of the evaporation process with 

temperature jT0  are supplied to the evaporation plant 

under vacuum. The evaporated solution is output from the 

plant with concentration рQ . As it is shown in [25], the 

process of evaporation of liquid solutions has four 

variable output coordinates, which include concentration 

of the evaporated solution, the boiling temperature of the 

solution, the pressure of the secondary steam, and the 

solution level in the bottom of the plant. All output 

coordinates are interrelated and in the first approximation 

they are described by differential equations of the fourth 

order in the following form: 

     

 
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
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
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,        (26) 

where: 1 , 2 , 3 , 4 - conversion time constants; pi - 

potential of the i th output coordinate; ik  - 

transformation equivalent coefficient; ji - potential of 

the i th input coordinate. 

If the processes of transfer of all input flows are 

characterized by a convective component moving with 

velocity jiv , then equation (20) takes the following form: 
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 .   (27) 

In this case, the zone of rheological transitions, and, 

correspondingly, transformations, will be the evaporation 

plant. Drain for concentration of the evaporated solution 

is consumption of bottom liquid; for the temperature – 

consumption of the secondary steam and bottom liquid; 

for pressure of the secondary steam – consumption of its 

condensate and still bottom; for the liquid level in the 

plant - consumption of the fresh solution and bottom 

liquid. Since all output coordinates of the evaporation 

plant are interrelated, each corresponding channel will be 

described by the equation of type (27). Since the 

evaporation plant belongs to a multidimensional 

technological control object with two input determining 

flows – the fresh solution and the primary steam, then its 

output coordinates can be divided into two groups of 

determining channels according to the principle of 

influence of the input flows on them: 

group 1: 

- concentration of the evaporated solution - 

consumption of the fresh solution; 

group 2: 

- the boiling point of the fresh solution – the primary 

steam consumption; 

- the evaporated solution level – the primary steam 

consumption; 

- the secondary steam pressure – the primary steam 

consumption. 

A characteristic feature is that between the output 

parameters of group 1 and group 2 there is generally an 

extremum that can be used to optimize the control 

process. Proceeding from the above, the evaporation plant 

can be described by a system of the following nonlinear 

differential equations [25]: 

- by concentration of the target component in still 

bottom:
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- by the boiling point of the solution in the plant still: 
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- by the level of the evaporated solution in the plant 

still: 
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- by the secondary steam pressure: 
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During the study of multidimensional control objects, 

like evaporation plants, absorption and rectification 

columns, reactors, it is considered that some output 

parameters can be stabilized by changing the output 

flows. For example, the level is stabilized by changing 

consumption of the still bottom, the secondary steam 

pressure – by its condensation with the refrigerant, the 

boiling point - by change in the primary steam 

consumption. Change in the temperature of the primary 

steam and concentration of the target component in the 

fresh solution in evaporation plants and rectification 

columns are generally assumed to be influential 

parameters. 

Thus, in presence of n  interconnected coordinates 

that are formed during transfer of the input potential of 

the determining parameter, the right-hand side of equation 

(27) will be described by the differential equation of the 

n -th order. The objective of research is to find the 

analytical solution of the obtained nonlinear differential 

equation. In most practical cases, it can be assumed that 

convection-diffusion transfer time   is equal to drain 

time t , and velocity of the potential transfer process is

tхv ji  / . Then, having determined that 
222 tvx ji , 

equation (25) takes the form: 
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If the potential of the output flow is proportional to 

the potential of the determining parameter of the input 

flow, then having defined that   )(tkt рj   , we arrive 

at the following linear differential equation 

jр
р

kt
dt

td
0)(

)(



   ,             (33) 

where    2/ 22   kvvDk jijiнj   - transfer time 

constant; k  - the transfer coefficient; j0  - the nominal 

potential of the determining parameter of the input flow. 

Under initial zero conditions, we obtain the following 

mathematical model of the transfer process in the 

following analytical form: 
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If the transfer time of the potential is not equal to the 

drain time, then the process of rheological transformation 

is clearly nonlinear and for the analytical solution of such 

problems it is necessary to use other boundary conditions 

and other methods that will be described in the following 

publications. 

CONCLUSIONS 

When transferring the potential of mass, energy and 

momentum pulse, their balance must be struck, that is, the 

amount of the potential of the determining parameter that 

came with the input flow into a certain medium should be 

equal to the amount of the potential of this parameter that 

is created in this medium.  

1. The right-hand side of this equation describes the 

process of transferring the potential from the source of the 

determining parameter (mass, energy, momentum) to the 

medium and shows how this transfer is carried out - by 

diffusion, convection or convection-diffusion.  

2. If we multiply this equation by certain transfer 

time, then we arrive at the equation of balance of the 

potential of the determining parameter (mass, energy and 

momentum), the right-hand side of which describes how 

much of this parameter was formed during transformation 

of the input determining parameter. 

3. It is shown that for transformation of the input 

determining parameter, some space is needed, which is 

called the rheological transformation zone. In this zone, 

one or several transformations can take place 

simultaneously, which are interrelated. Such 

transformations are described by nonlinear equations of 

the second and higher orders, which in general form do 

not have a solution. However, for some potential transfer 

processes, such nonlinear differential equations can have 

an analytical and fairly simple solution. 

4. The methods for solving such equations will be 

described in subsequent publications. 
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МАТЕМАТИЧЕСКИЕ МОДЕЛИ РЕОЛОГИЧЕСКИХ 

ПРЕОБРАЗОВАНИЙ ПРИ ПЕРЕНОСЕ ПОТЕНЦИАЛА 

ИМПУЛЬСА МАССЫ, ЭНЕРГИИ И КОЛИЧЕСТВА 

ДВИЖЕНИЯ 

 

И. Стенцель, О. Поркуян, К. Литвинов 

 

Аннотация. Рассматриваются процессы 

диффузионно-конвекционного переноса потенциала 

определяющего параметра, которым может быть 

импульс массы, энергии или количества движения. 

Показано, что существующие методы 

математического моделирования, как правило, 

рассматривают процессы переноса массы, тепловой 

энергии и количества движения от источника 

бесконечной мощности к некоторому 

неограниченному объему при начальных условиях 

первого, второго или третьего рода. Кроме того, 

принимается, что зона физического перехода 

потенциала бесконечно малая. При этом получаются 

очень сложные математические модели, зачастую 

непригодные к практическому использованию. 

Показано, что зоной реологического перехода может 

быть технологический аппарат, например, реактор, 

выпарная установка, абсорбер, ректификационная 

колонна и др., в которых происходит не только 

преобразование основного определяющего параметра, 

но и создание новых. То-есть процесс преобразования 

при диффузионно-конвекционном переносе может 

быть многостадийным с одновременным выходом 

(стоком) определяющих параметров – концентрации, 

тепловой энергии, давления и др. Для 

математического описания процессов переноса 

потенциала используются известные законы явлений 

переноса, которые дополнены соответствующими 

законами стока созданного потенциала. Показано, что 

в этом случае преобразования входного потенциала 

описывается нелинейными дифференциальными 

уравнениями, которые при определенных условиях 

могут быть решены аналитически. 

Ключевые слова: потенциал, перенос, 

преобразование, сток, модель. 

 

 



 

 


