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Summary. Agricultural machinery and tractor units 

studied as multi-element mobile machines in this article. 

The combined sowing unit consists of three elements, 

such as a tractor, the capacity for seed and sowing ma-

chines that move in succession. Known layout diagrams 

sowing units that have the capacity and the drill can 

change the sequence of location or capacity of the seed 

can be on the tractor and be rigidly connected with it. The 

dynamics of multi-machine data remains under-

investigated. To study the dynamics of multi-machine use 

the Lagrange equation of the 2nd kind. Mathematical 

model of spatial movement of mobile machines are com-

plex, and the study of the dynamics of multi-machine 

requires significant computing resources. The paper re-

viewed and investigated the spatial dynamic model of the 

combined sowing machine and tractor unit. For a mechan-

ical system with a spatial movement of the units of dy-

namic equations are represented in the matrix form. The 

kinematic parameters are generated automatically by the 

software and differential and kinematic structures. The 

dynamic equations of a nonholonomic system can be ob-

tained by a linear combination of the equations of the 

dynamics of holonomic systems with coefficients taken 

from the linear form. For numerical integration obtained 

in the system of ordinary differential equations convert 

them to normal Cauchy form in generalized coordinates 

or pseudo coordinates. The results of theoretical research 

of mathematical models of the dynamics of the combined 

machine-tractor unit as an example of the unit John 

Deere8345R + John Deere 1910 + John Deere 1895. 

Modes of motion, velocity components of the unit, and 

the path of movement, speed and dynamic wheel radius 

are study in this article. 

Key words: mathematical model, dynamics, tractor, 

hopper, seeder. 

 

INTRODUCTION 

 

As studied in previous researches an agricultural ma-

chinery and tractor units are multi-element mobile ma-

chines. The combined sowing unit consists of three ele-

ments, such as a tractor, the capacity for seed and sowing 

machines that move one after the other [1]. Basic layout 

diagrams sowing units that have the capacity and the drill 

can change the sequence of location [2], or the capacity 

for seed can be on the tractor and be rigidly connected 

with it. The dynamics of multi-machine data remains not 

sufficiently studied. 

 

 

THE ANALYSIS OF RECENT RESEARCHES  

AND PUBLICATIONS 

 

To study the dynamics of multi-machine apply the 

principle of d'Alembert-Lagrange equation [3] or the La-

grange equation of the 2nd kind. [4] It is known [5], in 

which the movement of the mobile machine read in con-

junction with the semi-trailer with the help of Lagrange 

equations of the 2nd kind. A mathematical model of the 

motion of one machine [6, 7, 8] has been repeatedly in-

vestigated. In [9-12] the dynamics and stability of the 

mobile machine. Agricultural machines and units in stud-

ies of the dynamics presented in the form of one, two and 

three-mass model in the works [13-16]. Mathematical 

model of spatial movement of mobile machines are com-

plex [17] and the study of the dynamics of multi-machine 

requires significant computing resources [18]. 

In these works mathematical model of the machine is 

an integrated multi-element and change the structure or 

internal communications, you need to rebuild it anew, 

resulting in increased labor costs and time to study. It 

follows that for the correct solution of problems of the 

dynamics of nonholonomic multiple systems is necessary 

to form the basic equations of dynamics [19] and justify 

the equation of communication, as is done in the example 

in [20] for the plane-parallel movement of the machine-

tractor unit. 

OBJECTIVES 

 

The aim of this work is a theoretical study of the spa-

tial mathematical model of dynamics of multi-element 

combination of machine and tractor unit. 

 

THE MAIN RESULTS OF THE RESEARCH 

 

On the sidelines of the Ukrainian widespread sowing 

combined machine and tractor units of production  

John Deere (Fig. 1). 

 
Fig. 1. Combined sowing machine tractor unit  

John Deere 8345R + John Deere 1910 + John Deere 1895 
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To select the optimal modes of motion and aggrega-

tion need to study its dynamics. To solve the problem, 

consider the spatial dynamic model combined seeding 

machine-tractor unit, which is shown in Fig. 2 and use the 

following notation: n  – upper index value indicates the 

receiving affiliation variable element of the unit СБТ ,, , 

respectively the tractor, hopper, seeder; XOYZ  – global 

coordinate system; nxoyz  – associated coordinate system; 

p. no  – the center of gravity; p. O  – the center of the 

global coordinate system; nnn  ,,  – rotation angles 

about respective axes zyx ,, ; nm  – the mass of the unit 

cell; n

z

n

y

n

x JJJ ,,  – given the moments of inertia to the 

respective axes;   – forward speed of movement; n

hfD , 

n

hrD  – front and rear hinge point (accession process 

equipment); n

ijPк , n

ijMк n

ijNк  – tangential thrust, torque 

and normal reaction to the appropriate wheel assembly; 
n

ijк  – wheels speed; n

ijCш , n

ijkш  – given tire stiffness 

and compliance elements of the unit. 

 

 
Fig. 2. Dynamic multi-element model of combined machine-tractor unit. 

 

Formation of mathematical models of the dynamics is 

performed according to the following methodology. For a 

mechanical system with a spatial movement of the units of 

dynamic equations are presented, in the form [19]: 
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where: n  – number of solid bodies in the model, im , 

 iJ


, 
iCa


, i


, i


 – mass, inertia tensor, acceleration of 

the center of mass, angular velocity and angular accelera-

tion of the i-th body, 
iCW

~
, 

i
W
~

 - structural matrix the 

radius vector of the center of mass and angular velocities 

of the bodies, the formulas for which are given below. 

 

Vectors 
iCa


 are set in the absolute coordinate system, 

and vectors i


, i


 – a body-related coordinate system 

(usually the main axes of inertia axes). The structural ma-

trix 
iCW

~
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i
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 may be generated either through the ma-

trix G  of expression (2), or by direct differentiation 

pseudorange similarly flat case: 
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Thus, the kinematic parameters
iCa


, i


, i


 are also 

generated automatically by geometric and differential 

structures: 
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The summands in (1) generated by the force elements 

are formed similarly to the case of flat formulas, depend-

ing on how you defined their structure. 

When using the matrix G  in the above formulas, one 

(in the form of a transposed) is a common factor, and 

which can be taken from the left. In the three-dimensional 

case we obtain the equations of the form: 
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. (2) 

 

It follows that the dynamic equations of a nonho-

lonomic system can be obtained by a linear combination 

of the equations of the dynamics of holonomic systems 

with coefficients taken from the linear form, expressing 

generalized velocities through independent generalized 

velocities (pseudo velocity) (2). The resulting equations 

are actually a vector-matrix form known in the analytical 

mechanics “equations of nonholonomic systems with 

speed-dependent excluded” [19, 20]. 

Note also that equation (2) up to notation structural 

matrices coincide with the equations for holonomic sys-

tems, and differ only in the formation of the structural 

matrix, they included. There are two algorithms for auto-

matic generation of equations of motion of nonholonomic 

systems for solids. 

In the first foundation laid by the fact that the dynam-

ic equations of nonholonomic system represents a certain 

combination of equations drawn up for a holonomic sys-

tem. Therefore, at first an equation of motion of the sys-

tem without taking into account the kinematic structures 

(1). Followed by their linear combination with non-zero 

coefficients of G formed by equation (8). 

The second algorithm [19, 21] is based on the direct 

calculation of the coefficients of the structural matrix for 

a nonholonomic system by differentiating the structures 

and the formation of equations pseudovelocity replace-

ment operations there with generalized speeds transac-

tions with pseudovelocity. 

In both algorithms for the system of equations must 

be supplemented by the equations (2) and the kinematic 

parameters instead of each of the linear and angular ac-

celeration and angular velocity substitute expression ob-

tained by differentiating the structures in time with regard 

to (2). 

Direct problem of the dynamics of a mechanical sys-

tem is to determine the motion (in generalized or pseudo-

coordinates) under the action of the applied forces. The 

problem is reduced to the integration of systems of ordi-

nary differential equations (lime) together with (1) or (2) 

for nonholonomic mechanical systems with given initial 

conditions. 

For numerical integration obtained in the SODE con-

sider algorithms for their transformation to the normal 

form of Cauchy in generalized coordinates or pseudo co-

ordinates. For holonomic systems introduce the vectors of 

generalized acceleration and velocity qvw   , qv   – 

and rewrite the equation (2) in the form of: 

 

 FMw  , (3) 

 

where:   
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 – matrix of 

inertia of the system, F  – the vector-matrix generalized 

forces of the system minus the terms of the inertial terms 

on the left side, non-generalized acceleration, which can 

be obtained by substituting the equations of motion of 

analytical expressions pseudo acceleration zero and taking 

the results with the opposite sign, i.e.: 
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After allowing the system (3) with respect to the gen-

eralized accelerations – FMw
1  finally we get the ash 

in the form of Cauchy: 
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Similarly, for the systems described in pseudocoordi-

nates (in generalized coordinates and pseudovelocity) and 

for nonholonomic systems form a Cauchy obtain: 
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The first equation (1), when πv  , the same as the 

expression of the dependence of the generalized velocities 

through pseudovelocity. 

The initial conditions for the system are the values of 

generalized coordinates and generalized velocities inde-

pendent (pseudovelocity) at the initial time: 

 

 0000
, ππqq 
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.  

 

Build in an analytical form inverse matrix of inertia 
1

M  is not possible. In the numerical integration at every 

step by the time the matrix of inertia is calculated from 

the values of generalized coordinates in the previous step 

and to calculate the left side of the bottom of vector equa-

tions (4) and (5) solve systems of linear equations by 

Kraut. 

A dynamic model of a multi-element of combined 

machine-tractor unit (Fig. 2) has eight generalized coordi-

nates, ie, eight degrees of freedom: 

 

  TССББTTTT ZYX  ,,,,,,,q . (6) 

 

As an independent coordinate with dependent varia-

tions selected: 
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Then a mathematical model of dynamics of multi-

element machine-tractor unit has the form: 
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where: if  – a function of the vector-matrices FMgG ,,, ; 

8,...,1i  – ordinal number generalized coordinates. 

 

Equations independent coordinates with dependent 

variations has the form: 
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 (9) 

 

Thus a dynamic model of spatial movement machine-

tractor unit consists of equations (8) and (9), which are 

formed using methodology (1) - (5). 

 

RESULTS SOLVING OF MATHEMATICAL MODEL 

 

Consider the results of theoretical studies of the 

mathematical model of the dynamics of the combined 

machine-tractor unit as an example of the unit John Deere 

8345R + John Deere 1910 + John Deere 1895. The results 

of the simulation are shown in fig. 3 - 9. 

 
Fig. 3. Simulation of the movement of the unit 

 

Modeling the spatial movement of the unit volume 

primitives are shown in Fig. 3. In the straight running of 

the tractor calculate the coordinates of the centers of mass 

of the unit (Fig. 4), respectively, the following elements 

of the tractor moving in a straight line. 

 

 
Fig. 4. The coordinates of the centers of mass of the 

unit in straight running (––– TX , – – – БX ,      CX ) 

 

 

Fig. 5. Wheels speed^ (––– Тк11 , – – – Тк12 ,      

Тк21 ,  –  –  – Тк22 ). 

Consider the case of motion of the machine and trac-

tor unit in the field to manage the movement of mechanic 

hand and a constant speed. The speed of rotation of 

wheels of the tractor shown in fig. 5. In accordance with 

the manipulated variable speed mechanic wheels are in 

the form of harmonic oscillations (Fig. 6). 
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Fig. 6. Velocity of the center of mass of the unit under 

control the movement (––– TX , – – – БX ,       CX ). 

 

 
Fig. 7. The translational speed of the tractor during ac-

celeration ( TX ). 

 

 
Fig. 8. Tractor wheel speed during acceleration  

(––– 
Тк11 , – – – Тк12 ,         Тк21 ,  –  –  –  Тк22 ) 

 

Acceleration of the unit is carried out up to speed of 

2.8 m/s, which corresponds to agrotechnical requirements 

of 10 km/h (fig. 7). 

The speed of rotation of wheels of the tractor are dif-

ferent for the front and rear axles, but equally on the sides 
ТТ кк 1211    , ТТ кк 2221     (Fig. 8). 

 
Fig. 9. Dynamic radius of the tractor wheels during ac-

celeration (––– Тr 11д , – – –  Тr 12д ,       Тr 1д2 ,  –  –  –  

Тrд22 ). 

 

The mathematical model allows the simulation pro-

cess to determine the deformation of the tire and the dy-

namic radius of the wheel (Fig. 9). During the movement 

of the tractor tires deform at 0.06-0.09 m. 

 

CONCLUSIONS 

 

1. The approach proposed in this paper can reduce 

labor expenditure and time for modeling the spatial 

movement of multi-mobile machines. This methodology 

allows you to build a mathematical model with minimal 

resources to make changes in the mathematical formalism 

of the test process. If you change the structure of the in-

vestigated multiple-mobile machine only change con-

straint equation, which reduces the cost of developing a 

mathematical model. 

2. The results of theoretical studies of the mathemati-

cal model of the dynamics of the combined machine-

tractor unit as an example of the unit John Deere 8345R + 

John Deere 1910 + John Deere 1895. Certain elements of 

speed and deflection unit allow further investigation of 

the stability of motion. 

3. The leading wheels of the tractor are deformed un-

der the influence of the traction force. The deformation of 

the wheels was 0.06-0.09 m, which is necessary for the 

subsequent simulation of slipping. 
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ИССЛЕДОВАНИЕ МАТЕМАТИЧЕСКОЙ МОДЕЛИ 
ДИНАМИКИ КОМБИНИРОВАННОГО МАШИННО-

ТРАКТОРНОГО АГРЕГАТА 
 

Р. Антощенков, Л. Тищенко, А. Лебедев 
 
Аннотация. В работе сельскохозяйственные ма-

шинно-тракторные агрегаты исследуются как много-
элементные мобильные машины. Комбинированные 
посевные агрегаты состоят из трѐх элементов, таких 
как трактор, ѐмкость для посевного материала и сеял-
ки, которые располагаются последовательно друг за 
другом. Известны компоновочные схемы посевных 
агрегатов, у которых ѐмкость и сеялка могут менять 
последовательность расположения или ѐмкость для 
посевного материала может находиться на тракторе и 
быть жѐстко связана с ним. Динамика таких много-
элементных машин остаѐтся недостаточно исследо-
ванной. 

Для исследования динамики многоэлементных 
машин применяют уравнения Лагранжа 2-го рода. 
Математические модели пространственного движения 
мобильных машин являются сложными, а исследова-
ние динамики многоэлементных машин требует зна-
чительных вычислительных ресурсов. В работе рас-
смотрена и исследована пространственная динамиче-
ская модель комбинированного посевного машинно-
тракторного агрегата. Для механической системы с 
пространственным движением звеньев уравнения ди-
намики представляются в матричном виде. Кинемати-
ческие параметры программно формируются автома-
тически по кинематическим и дифференциальным 
структурам. Уравнения динамики неголономной си-
стемы могут быть получены линейной комбинацией 
уравнений динамики голономной системы с коэффи-
циентами, взятыми из линейной формы. Для числен-
ного интегрирования полученной в работе системы 
обыкновенных дифференциальных уравнения их пре-
образовывают к нормальной форме Коши в обобщен-
ных координатах или псевдокоординатах. 

Приведены результаты теоретических исследова-
ний математической модели динамики комбиниро-
ванного машинно-тракторного агрегата на примере 
агрегата John Deere 8345R + John Deere 1910 + John 
Deere 1895. 

Определены режимы движения, скорости элемен-
тов агрегата, траектории движения, скорости враще-
ния и динамические радиусы колѐс. 

Ключевые слова: математическая модель, дина-

мика, трактор, бункер, сеялка. 


