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PART II: OTHEE. EXISTENCE CONDITIOINS

Arnna Stankiewice

Department of Techical Seience
Tmversity of Life Sciences in Lublin

Summnary. [n the fivst part of fus paper the necess ary and sufficert cordition of the exastence and uniqueress
of the relaxation spectram of Inear viscoelastic makrials s givenbased on the fard amental for nach materials
cancept of faling memory and the nobon of conpletely mototorne fainctices. In flos paper, using the knoarn
conditicys for 2 scalarvahied ivbnitely differentishle fanchon to be the Laplace tamsfonm of an ndegyshle
fimcton, other recessary and safheient condibons wlich gnarartes the exdsterce of the norregative wlacation
spectum of viscoelastic material ae given Momower, we give simple (mafficient) conditiors urder wlich the
square Itegrdble relaxation spectum there exast. The sbove 15 of an onportant wle for the symthesis of the
relaxshon spectmm identification azonthie. All the conditices mfer to the Boltmmnann relaration modabis,
wlichis accessible inexperiment. Thiee ilhstrahive exanples are zZiven
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INTRODUOCTION

In theological literatare, it is generally assurned that the linear relaxation modulus &) has
the following representation [Ter Haar 1950, Clristensen 1971, Ferry 1920]:

Gl;f}—fmv}e o, (L)

where: H{v), v=0, is the spectrurn of relaration frequencies. The modulus (Ff) can be alao
represented in equivalent form as a fanction of the spectian of relaxation tivwes Mz), £=0 as follows:

G — TN[r}e et i)

In the first past of this paper nece ssary and sufficient condition of the existe nce and nrigueness
of nonregatrve relaxation spectarn of linear viscoelastic materials is grven based on the notion of
cornpletely rmonotonic Boltmnann relaxation modulus [Anderssen and Loy 2007 . In this paper
tao next necessary and sofficient condifions for the existence of normegatree spectm as well as
sufficient condiions for the existence of square integrable spectiarn are ghven. The last propertyis
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of fundatrental role for the knoan and still constiieted alzomthems for relaation spec o ident-
fication [Starkiewics 2003, 2005, 2007, 2009]. &11 the conditions refer to the relavation roodulus,
which is accessible in experirnent.

OTHER EEISTENCE CONDITION S

Linother known in the literature necessary and sufficient conditions for a scalaralued -
finite Iy diffe rertisble fiunction on (0,00} to be the Laplace transform of a function, can be used to
obtain the next relaration spectum existence conditions. The proofs are not necessary since the
conditions follow irarne diately from the known results.

O the basiz of the Post-Widder conditions [Widder 1946, 1971] the following theoremn can
be stated.

Theorem 1. Monnegafive infegrable relaxation frequencies spectrum Hv) defined by ihe
eq. (1) dhere exists ifF the Hnear relaxafion modulus Rf) is @ function of class C7 (00 and fhe
condifions

E|H; w[v}|a‘v-:im, n=12 ., (3)
Jim T2 () - B (3] adv=0, &
are satisfied, where:
2,0y -Y [f) G"“](i} (5)
mlow W

isco called n-fh Pod-Widdar approximafion of the imwerse Laplace fransform of G

Liz it was in the case of theorern 1 in the first part of the paperapdying theorem 1 o relaxation
modulns fror example 3 in the first part of the paper we can easily conclude that the infegrable
relaation spectrum of this viaroelastic material these exists.

Example 1. Let us consider again the relaxation modubus GA=¢". On the hasis of forranula
" Er=(-1 ™" the n-th Post-Widder approxirnation s as follows:

L a4l » [aml]
H;w(v}—':j (;j (—1}%1(;) -1,

Thus, for everyinteger n=l the condition (3) is not satisfied. Therefore, on the basis on theo-
rem 2 nonnegatrve integrable relaation spectarn of this material does not exist. For the modulns
FHi=F" the kemel of the e (1) iz singular Hilhert's keimel {(f—o, which was studied by Boltzrnann
evenin 1276 war [Bollzmann 1876).

The existence of norregatiee ttegrable relaxation spectnurm has been considered dboe . We
tow wish to show that such a spectrurn maybe wboarded.

Example 2. Consider again the viscoelastic relaxation modulus G#)=11 )" form exaraple 2

in the first part of the paper, where the parameters 2=0. Suppose p=1 2. Since I‘[}é} —J;_z;untlwha-

gig of eo. (90 in the first part of the paper, the coresponding relaxation spectm (A — e ™ Ff v,
Hiv) 15 plotted in Figure 1. The spectim is integrable, hoowever it is unbounde d and singalar for v=0.
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Fig. 1. The wlaxation spectam H (V) — & a .l"-y‘?i',"l-' for afewr parameter o

In the next theorem the necessary and sufficient condiions for the existence of bounded
relaxation spectum are forranlated on the basis of Arendt’s conditions [1987].

Theorem 2. Monnegafive bounded relaxafion fie gueneias spechrum Hv)dafine d by fhe eg. (1)
there exids iff Wnear relaxafion modulus G is q funcfion of elass CT0,00) and for some constant
M=0fhe Widder ‘s condifion [Widder 1944)

d°G(t)] . Ml

o e Jor n=0and #=0, (&)

is safisfied.

Using the corndition () it iz easy to checkif'the relaraion spectrurn of the considere d mate rial
there existz andishounded in the case when the comresponding modulus G(f) is infinite Iy differe nt-
dhle function. The effectrveness of this criferion is dernonstrated by the next exavaple.

Example 3. Let uz corsider again the exponential relaxation rodulus described by indinite
Ditichlet-Frongyr sexies [Cetlach and Mlatzereniller 2005]:

Gl - T Ee ™ + Eoo. (7

According with the remark 4 in the first part of the paper, under the asswraption E =0, v =0
and E_= 0, the modnlus (7} 15 comple tel y rmonotonie fune ior. By (73 &0+ — E:c'_l EI. + K, thus
on the basis of theorem 1 in the first part of the paper there exists integrable relaxation spectmm
Hiv) defined by the eq. (1) and in view of the assertion 1 from the same paper the spectrom is

urdue . We now checl if for the relaration modulns G (7 the Widders condifion (8, that is:
A7)
4t
iz satisfied. It is proved in Appendix & that for angr k=1, such that v, # 0 and for angy finite
trvber b there exists # such that for anyn = A and £=¢, (n+1)/v, the following estirmation:

4 Gf*} et B T e e, (3
ot VE

holds, what contrary the mecmality (2. This leads fo the final conelnsion, that on the basis of
theorern 2 the e laxation spec tun corresponding o the relaxation modalus (7) is not bounded. Tt is

< M forn = Oand £ 0, )
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not diffienlt to check, nsing the s lectmity property of Dirae delta favetion S0v) and the definifion
forremla (1), that the relaxation spectium takes the form

Hvi— ﬁﬂfaw—vm E S0 (10

where &v-1) is the Dirac delta fimction displaced to the point v=v, Discrete relavation spec-
e (107 iz de picted syrobolically onFigure 2; here Dirac delta furctions are e placed by Kronecker
delta functions of one wrnitvalue in the singular points v=y of &v—vl.

& rmber of different algonthrms have been proposed during the last few years for identifi-
cation of the relaxation frecquencies and relaxation times spectra [Stankiewicz 2003, 2005, 2009,
for other references and classification see [Stankiewicz 2007]. &1 the methods are based on the
expangion of the unknown spectnum in finite series of prope rly s lec ted basic fanctions of the space
L0}, Applying theorera 1 in the first part of the paper and theorera 1 given shove we can as
sert the conditions under which the relaxation spectrurn F{v) is not only integrable bt also siuare
integrable on(0,e2). They are stated in our next theorem.
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Fig. 1. % clemate wpesentation of the relaraton spectiawn Fivl (10)

Theorem 3. Jihe linear relaxafion modulus GF) is compledely monolonic fime fion with fad-
ing memory, F0+1=0 and the Widder condifion (8) holds, ihen fhere exigs a unigue nonnegafive
relaxafion spectrum H (v e L (0,00} dafaed by the eg. (13,

Proof Existence of the nonnegattve melaxation spectnun A follows iraoediate by from
theorera 1 in the first part of the paper, applying assertion 1 in the fivst part of the paper implies the
urdgue ness. Since on the basis of theoremn 2 spectarn M) is bounded and by virtue of theorermn
1 in the first part of the paper it is also infegrable, using the inequality:

[ B2 (vidv < B [ By,
a o
where: 3 — sup H (v, the ohtain immediately the square integrahility of B, The proof is
vl
rowr cokaple ted.



302 Ama 3 tankiesricz

Belaxation spectrorn A} g’“s’q‘m- i(zee Example 2) is an exaraple of integrable
specturn, which is not sgquare integrable on (0,w). Clearly, the Enler’s infegral of second kind

Nz} I:vz e “dvis not comvergent for any 2=0.

EZIGTENCE OF THE RELAXATION TIMES SFECTEU L

O the basiz of defiration equations (1) and () the spectra of relaxation times Mz and re-
laxation freguencies Hiv) are related by

Mo=H /ot and Hivi=M1 A, {113

It is easvy to estdblish, nsing the definitions (1) and (2}, that nonnegattve integrable relaxation
frequencies spectiun there exists iff there exists nonnegative specthun of relaxation tirnes. The
existence conditions of theorern 1 and theorern 1 in the fivst part of the paper refer to the relazation
modulus and not to the relaxation spectrurn, therefore thesyr are also walid fior the spectrum of relax-
ation tirees. The next theorern provides the necessaryand sufficient condition for W{z} e £ 0,000,

Theorem 4. Suppose #haf ihe lnear velavafion modulus G is complaloly monoforic funefion
and F0+i=e The relasafion fimes spactrum N{r} e £, iff the function wE {v} € A0, e} The
specham of velaxation feguencies B {whe LX(0,coiff the fimedion W (<)} e (Do)

Proof Under the taken assuaptions it follows frorn theorera 1 in the first part of the paper
that the spectra of relaxation tivee s M) and frequencies Biv) there exist. The spectra are related by
egs. (117, Byrsitaple change of wariables =10 in the 1eft-hand side of (11), we have the sequence
of egualities:

I TN[r}lafr —TH[lfr}lfr‘Hr - TH[v}lv‘* fatay —TH[v}lvlatv.

Tlerefom, W{c} € L7(0,00) iff v (v} e L2(0,00). To compete the proof it is enough to note
that, nsitg the second equation of (110, that A (e L2 (0,00 iff oW e 2[00

FINAL REMARK

However, the relaxation spectram is not measurable divectly: There fore it mustbe determined
from the appropriate response functions, measured either in time or fregquency-dormain. The litera-
ture concerned with different alzorithems for the relaxation spectrarn corputation using the data
both from a sreall-amplitude oscillatory shear experitnent, [Honerkarnp and Weese 1989, Elster at
al. 1991, Brabec at al. 1997] for example, as well as fror relaxation modulus and creep cornpli-
ance data [Yamarmoto and Mlasuda 1971, Fujihara at al. 1995, f and Bafant 2002, Stankiewicz
2003, 2003, 2009] and papers cited thereir, is quite exferstve now. In almost all known methods
the relaxation spectun model H, ) is selected in such a way that the respective rodel of relas-
tion modulus:

w

()~ Hyy (vie ", (12)
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enmires the best fit fo the measurernent results. & relation bebaeen the true relavation spec-
trure Ay defined b (13, and ite raodel H 0] provides the next assertion, in which the necessary
condition is obedous inviewof (1) and (12, while the sufficient cordition follows fror the Laplace
travsforrn irserbability

Assertion L. [f'the frue relaxafion spechum fthere exisds, fhen Hvy = H 00 iF G = G418,
where G 08 is ihe relaxafion modulus model.

Of course, if the true relaxation modulus F# of viscoelastic material under study is not
cornpletely monotonic function, according to the remark 5 in the fivst part of the paper the tue
relaxation spectumn of this material does not exists. Howewver, we may still describe the mechani-
cal properties of the material naing the relaxation spectr rodel H 00, takivg into account that
it iz only the relaxation spectyarn of the mode {12}, which is only an approximation of the reality

AFPENDIE &

Derwration of inequality (%) Let i=1, v,#0 and n=1. Cn the basis of equation (7}

d’ th} fi‘.‘i-l-'l —ZI:‘V-}HE-E ﬂ‘_.'fi‘.‘l-ﬂ..
a3t < i i
Let f =§ = (n+1)h,. We have the tollowing estimation:
JHGE?} ad = a gk o ] 7 e
|5 T L Ee T 2 0 Ee T e (1)
i1
where:

a4, — ﬂq‘n +1le M g e

¥

Ionotordcally decreasing ssouence B = [(nHL W)™ tends to the rureber o, whence for any
nz1we have (nH)" "= en™" what irplies the estimation:
a4, = B n+le P 0+ ﬁm.e et
Ve Ve

and hence, using again the same comvergence property of the sequence &, we obtain
&, = B a+le "y - ﬂ-\f’mg "l Y ﬂ-\-’m.e e

¥y L ¥

This irplies forany 1 =7 = n-1 the mequality

g, ——Exfn+le “‘ﬂ(n—i}[n—j}”’”l,
¥y i
whence, for j = n—1 we e that:
ak—ﬂ n+le 1n1—£ n+ lnl, (.2
W, V&
Corbinng (& 27 and (A1) we obtain:
aFHE E
5 "‘}|ﬂ”“ = —% ofn +151,
| & | e

.
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that is, for any findte raraher M thers exists 4, such that for argrn = W and £ = £ the inequality
(9 holds. &nd the proof'is completed.
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O ISTHNIENIUI JEDNDZI:J&CENDSCI SPEETREUM RELAKS AC]I
MATERIALOW LEFKOSFREZVITVCH
CZESC II: INNE WARUNKI ISTHNIENIA SPEKTRUM REL AKIACII

Streszerende W plerasze] cmpicl pracywychodey = fimdanertaliego dla materiatder lepkospresystyeh pojecia
zarikajgre) pammect 1 wykorzyshyac wlasnosel frke)l w pebn morotornezgeh s formbosrann podstaaroary
wammnek koriecmny 1 dostatecmnye ishuera 1 jed neemacmeé el speldram wlaksacii maten abdar oo lapkospie-
aytrch., Wie) pracy, wvkorzystyjae znans wararki istierna oderiote] transtonmaty Laplace *a = fiankeji rmeczye-
wiste], podano me warankl komecme 1 dostateczre 15 tuemma meyjenmego spekinam relaksacyi, Podano taloe
wammnba [erys tarezagaee) 1stmerna s peldmam wlaksacy cablowraliezo = karadratern; wannla te magg 1stotne =na-
ozenie dla konstr kogi alzorrbnder identrhlkac)i spelotnm relaksanyi. Wezyps tlae wamnnld odnos=s sie do moduda
relaks an)l Bolmnanna, czpl wielkodcl dostepre] ponmarweo . Bopwasania s stowrans teema prarliadan.

Slowa lhwrowe: lephkospresystods, modut relals acji, speltom relaksami, 1shuemne 1 jednoenacmodd



