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Summnary. Over the last 30 years many al vances havebeen malewhich provred that the relaxation s pectiom s
a very corrveruant charactens e quantity des bing the properties of the linear vis coelastic materials | espeaally
of palymer sobihors and polymer melts as well as soft banlogical materials. Given the s pechum itis wenreasy
to corvert one mecharmeal mateal finchon used in enginesving calmilabices ite ancther cme, s1ch as the -
lazxation shodu s or the cep comnpliance, the cors tint and time-variable bulk and shear moduhis or Poisson's
ratio. The relaxation spectrmn canbe also used o validate erperiments by cioss-checling waults, ez, fom
ceep and stress wlaxation tests | [nthus paper the man necessary and suffiment condition of the estence and
uniqueness of the wlaration spechum of viscoslastio material 1s grrenusing findamertal for sach materials
corcept of fading menory and based onthe notion of comple®ly monotone fnctions. Other wlasation spectmm
exdsterce comdibiors are givenin the secomd part of the paper.

Keywonds: viscoelastieity relacaton modubis, mlaration spectmm, conpletely mornotore fancton, existerce
and wrmqueness

INTRODUCTION

Infering models of the materials from observations and studying their properties is really the
important staze of modern engineering desigh and the prelude to the symthesis of the production
process control systems. Rigorous pee dictions of the materials hehavionr in different corditions, es-
pecially mder diffe rent loading, iz essertial both for the optiznal design of the mac kines andwe hicles
operation and the assurance of the stracharal integrity of buildings, as well as for process of systern
tnaitte nance, in particular to guarantee raintenance safety Srong all the raaterials, for which the
linear and isotropic properies hypothesis is gquite enough for a 1ot of engineering parposes within
a small defornations, significant ave viscoelastic materials for which energy dissipation occurs ina
result of “internal friction” bebaeer, for example, polyraers molecules or cells of plant mate rials.
Viscoelastic models are uzed before all to modelling of different polyraeric Liguids and solids [Elster
atal. 1991 Brabec atal. 1997], concrete [Derski and Z1eraba 1968, soils [Lemaitre 2001]. Research
studies condneted daring the past few decades proved that these rodels ave also an aportant tool
for studving the belaiour of viscoelastic plant raterials (wood [Lemaitre 20017, finits, vegetables
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[Fan 19997 and other papers cited thereir). Bheologieal models which are good for characterizing
strain-stress dependence, creep and stress relavation within a small deformation are applied for
tigorons predictions of the plant raterials behavdour in an accurate engineering methods nsed for
food processing machines, harvest and storage engines as packing and granulating engines design.

The mecharical properbes of linearviscoelastic rate rials ave fully characte rize dby relaxation
or retardation spectra [Christersen 1971, Brabec atal. 1997, Sndersser and Loy 2002 . The spectra
are vital not ordy for constitutive models bt also for the insight into the properies of a viscoelastic
material since from the relawation or retardation spectum other linear material functions can be
caloulated withont diffic ulty [Brabec atal 1997].

The parposze of this paper is to gove the necessary and sufficient conditions, which guarantes
the existence and urdcue ness of the relacation spectnurn of line ar vise celastic mate rials. Relavation
tonodulus is said o have “fading raewmory™, if changes in the past have less effect now than e quiva-
lent more recent changes. & brief review of this fondarmental for viscoelastic materials concept is
contained. Mext, the Boltmann relavation moduli are constrained to be a corgplete Iy ronotone
function, what gives considerable raathernatical machinery Sorne resulting rheological iraplications
are diseussed. The nece ssary and sufficient condition of the existence and uniquene sz of nonmegatiee
imtegrable relaxation spectiarn is ghven. To make the idea of relationshiphetween the fading memory
of relaxation modulus and relaxation spectnim properties a litfle clear, we give several examples.

LINEAR VIACOELAZTIC MATERIALS

The muaxial and imotropic stress-strain equation for a linear viscoelastic material subjected
to stoall de formations can be represented byva constitative integral equation [Christernsen 1971]:

lt)- LG[f—A}s[A}ﬂ, (1)

which iz based on the Boltzmann superposiion prineiple. Here, o) denotes the stress cor
responding to grven strain rate 45 and GF), #=0, 1z the linear (Boltmmarey relaxation raodnbos. The
tnodulus Ff) or uniavial relavation fnetion [Cerskd and Serba 1965] equialently; is the stress,
which is induced in the viscoelastic material described biye. (1) whern the urdt step strain 28 is ira-
posed. In the result, (#) =0 for ansy#=0. The isotherrnal conditions are asswrned and only the states
of urdaxial stress and strain are considered here . The equation (1) describes how, in such mate rials,
the stress af), at tire £, depends not onlyon the strain af) at tivne 7 but aleo on their e arlier history
of the strain, 1e. on the strain rate &, This is the essence of the memory of viscoelastic materials.

CONCEPT OF FADING MEMORY

The properties of linear viscoelastic material in particular the kind its mermory depends on
the kemmel of eq. (1), ie. on the form and stucture of the relaxation modulus G#). Sppropriate
conditions raust be irmposed on the Boltzmanm modalus in order to guarantee that the constibatie
relationship (1) makes sense phomically In the fivst place, G{#) mnst be such that the stress o at the
tire # depend on the firne dermatree A7) of the strain history for £=# but do not depend on the
strain in the futwre. This cansality requirement is already inclnded in the corrolution equation (1)
in which the time # is the upper lirait in the integral. Fonmally the relaxation modulus iz cansal iff
i throughout, iff = if’ and ondy if) G#H=0 for any§ =0
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The rext, in the modelling of linear viscoelastic materials is a findamental concept of fading
mermory of the relacation modulus &) that back to Boltlzmann [1276]. When this re gularity require-
toent is roposed on Gf) the changes in the strain rate in the distant past roast havee less effect now
than the same changes in the more recent past. Thus, by virtue of the strocture of the corsolution
ecuation (1) it is easy o see that the fading mernory relavation modulus & is wonotonically de-
creasing function (in the strict non-increasing), and in the result dFHIS =0 for any =0, COheviously
thiz iz only necessary, but not sufficient conditions for the relaration modulns &#) to have fading
memory, so much that as clear from the literature, there is no unrversal and unicque defiration of
fading memory & review of the conce pt of fading reernory can be found i work of Anderssen and
Loy [200]. & wide wariety of views are sonmarized as follows.

In parelsy rae chardstic approachy, it is assarned that for the fading remory material too con-
ditions the nonnegative defindteness of the relaration modulus =0 and the weak dissipation
principle are satisfied. This approach exarined in defails in [Haroga 2005], natorally iraply the
requirernent that the modulus Gf) is strongly positive definite farnction. The abowe is satisfied if,
for exarmple, G{# is nonnegative non-increasing corvex fanction for £=0, 1e. the following three
conditions are satisfied:

G(f}aﬂ,—@zﬂ,maﬂ for il {2}
ot 4t

which ave given for example i [Calocio at al 2004

The rtheclogical approach is based on the assuraption that the Boltzraarny relaration rodulus
FHf and the molecular weight distibution are related by some integral rules. This appeoach iz
dizcuzsed in details in Cocchind and Maobile [200Z], in this work the next references can he found.

The systemns science approach 15 the point ofwiew, which is supported most strongly by the
tnathermatical advantazes of the linear dymarnical systerns theory It is assureed that the response
of fading metnory behaviowr material can be modelled by a monotony decreasing and suitable
stooth function F#. The most restictie assunption is that &F iy [El,m}.-‘“. Fiy [D,m} [Fahnmo
and Moo 1997]. & coraprehe nsive surare vy of this approach can be fourd in work by Fabrizo
and Ivlomo [1997].

The concept of cornplete monotorde ity of the Boltzmann relaxation rmodnbos whick iz adopted
in thiz paper and is described in the next section.

Both the parely mechardstic approach which wields the conditions (20 as well as the systerns
science approach are not sufficient to draw a distinction viscoelastic materials from othe r mate rials.
This, in horn, moeans that the definitions of fading meraory in terros of physics principles or systerns
sciences categories are unnecessary [Anderssen and Loy 2002). Unlike the prrely mechanistic or
systems ariences approaches to fading merory the theological appeoach allows the posshility of
distinguishing between linear visroelastic materials and, in particular, be tween polymers to which
thiz approach 1z addressed and other mate rials.

THE COMNCEFT OF COMPLETELY MONOTONIC BOLTZMANN MODULUS

The stronge st assuraption about fading mermory appears to databack to the seventies of X2
ce thury and was ntroduced by Day [1974]. Day’s choiee, for both practical and the oretical re asons,
was to define F#) to have fading memory, if'it is corapletely monotone, 1e. if the following condi-
tions are satisfied (sze Appendi A):

|:—1]|rJ d;[f}}ﬂforn =1 and £ 0, (2
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The proyerties of the systerns and materials of completely monotore fading memory ave
widely discussed v work of Colernanand and Ilizel [1967].

Remark L. The relaxation modulus &6 of fading memorp for which condifions (3) are safis
Jied may ba singular for =0,

Remark 2 [Hanyga 2005]. For compledely monofonic relaxaiion modulus (f) ihere exiss
the limif:

fm -G, =10 i

Inthe forrmla () & is the long-ferm modafes. MWodulns & =0 for solid and & =0 for ligmd
materials.

Remark 3. [ complefaly moncfonic relaxafion modulus is sch fhaf F e IP(0.e0) or
G e L'(0,00)) then G0)=0o and the lmi fim, .06 =0, =10

To make the ideaa litfle clear we give the following exaraple.

Example 1. &n indivdte Didchlet-Prozor [2i and Bazant 2004 series is chosen as the relax-
ation modulos:

Ge - i Ee®i+E, (5)

where: the pararaeters 20, v=0and E =0, The structure of such generalized discre te M-
well rodel (5) representing well the linear wiscoelastic matetials in most cazes is given on Figure
1. The elastic modulus ¥, and the partial viscosity s, associated with the j—fh Iaxwell mode deter
ming the relaxation frequencies v =E iy For physically realistic materials these pararieters must
be positive. The parameters E and v completely represent the viscoelastic spectrur of the material
igee example 3 in the second part of the paper). [tis easily szen that for the relaxation raodulus (5)
conditions (2} are satisfied, thus G#) iz strongly positiee definate funetion. It is also easyto check
the next remark.

Remark 4. [f #he paramefers EJEEI and vjz[l, them the relaxafion modulus (5)is complefely
monofonte function. [f additionally E,=0, then G e I [ D.enyr I (0,00}, as well as G & IF (D,m)

Jor any O=p=oo I fhis case we have exponeniial fading memory,

a
£ E &
ol
f]’,|_|_|f?1\_|_1 f]’\_l_(
[=a

Fig. 1. Gerernlized discrete Maoaell model with addibonal elastic elamert E,
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RELAFATION ZPECTRIIM

In the theological literature it is corarnordy assurmed that the modulus & has the following
relaxation spectrur repre se ntation [Derski and Fieraba 1968, Christensen 1971]:

G- [ H(vje “a (6)

where a nonnegattve relaxation spectrarn Aw) charac terizes the distribution of relaxa ion fre-
guencies v=0in the range [wa-hdv]. Equation () wields a formal definition of a relaxation spec tmm
[Christerser 1971, Fao 1999, & nderszen and Log 2007

The spectrarn representation of eq. (&) guarantes, in particular, that the relacation modulas
H# i a ronotordcally decreasing fanetion on [0,0) and infinitely differentidhle fonetion on (0,0),
ie. function of C7(0,00) class. Howewer, the obrions necessary conditions for the relaxation spec-
trurn existence are not the safficient one . In the next section the relaxation spectrurn necessary and
sufficient existence condiion is ghven based on the notion of complete monotorde fanctions.

RELAXATION SPECTREUM EXISTENCE AND UNIQUENESS

It is easy to verfi that, if the eq. (&) is satisfied then
LGt .
(=13 = (-1} £H[v}v“e v,

Thus, the next rerark is not surprising.

Remark 5. ifnommegaiive spectrum of relaxafion frequencies HV) defined by the eq. (6) fhere
exists, fhem fhe relaxafion modulus i) is a conplefely monoiomnic fmetion.

From the aborve remmark it follows that for the spectral representation (6) the complete mono-
tonic fading raernory of the Boltzmann rmodulus iz established. What iz more, the coraplete monoto-
nicity of F(f) 1s not ordy the necessary but also the sufficient conditions of the relacation spec
existence of lineatr viscoelastic modulus. Clearly, in wiew of the Hanedorff-Bernste in-Widder theo-
rern of corplete monotonic frctions (see Appendiz &), for any real corpletely monotonic function
GH# defined on (0,00} for which the condiion G0+ is satisfied, there exists nonne gative firdite
(Borel) measure pon [0,0 such that:

&) —Ee Tl vy,

Lying duiv) = Hividw on the basis of the Hansdorff-Be mstein-Widder theorern we can state
the following condifion of the inte grable relavation specturm existence.

Theorem 1. MNowme gafive infe prable spechum of relaxafion frequencies Hyv) dejfined by the
eq. (6) fhere exists I fhe lineqr relaxafion modulus ) 1s complefelp monofonic funcion of fad-
ing memory and F0H+)=w,

The condition that G0+ = is required to ensare the integrability of the relaxation spec trm.
Using definition (6} it is easily seen that nonne gative spectun Hv) - if there exists — iz infegrable
if the integral (6) iz corrvergent for #—0°, Le. iff and onlyif:

G0+) — Fim G{f) - [ Hpvpay <eo.
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The conditions of theoremm 1 are obrdonsly the recessary and sufficient conditions for non-
tegative integrable function to be the ireerse Laplace travsform of nonnegative real function. The
urdgue ness of the relaxation spectnarn AW follows irene diatelsy frorn the irseertiability of the La-
place transforraation, therefore the following asserfion canbe forrnulated.

Assertion 1. Jf nonnegaiive relaxafion spechrum HOV) of linear vizeoelasfic material fhere
exisfs, then fhe specirum is unigue.

Example 2. Consider the relaxation modulus:
1

Gl —— 1
O e (7
where the paratneters @ =0 and p=0. Since foranyn:=0,
o d ) P 1
-1 - -0 OFr+p-1—=10 &
S EY e D (®)

the relaxation moduolus (7)) jest completely monotonic function. Cro the other hand
O+ =1/ =, thus on the basis of theoretn 1 the integrable relaxation frequencies spectom BV
there exists and in view of asserfion 1 iz uniguely determined. It is easy to verify that spectmm
corresponding to (77 has the forme

1
Hivi— ——v e ™, (9
Tipy

where: IMp) iz classical Euler’s garara funetion. Felaxation spec o B (9) for tevo pa-
rarneters @ and for a few values of p is plotted on Figure 2.

0.4 T 0
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o4 / \ 524
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il 5 1D il oz 04 ba
Relara ian fraguanoy v [s'l] Relaration freguency v [:'l]

Fig L Felaxaton specthom Hv) (%) for pararveters (A) o= 1 axd (B a=10
Example 3. Consider the relaxation modulus:
FHH=¢" (10}

Since inviewof (2) (-1 FHAE"={- 17"l '=0, the rmodulus (10) is corapletely raonotords
function. On the other hand, the condition &0+i=m of theorem 1 1= not satisfied here . O the bass
of the definition forrmla (f) the relaxation spectrur H{wi=1 for any relaxation frequency v=0.
This iz an exarple of the reloation modulns for which the coresponding relaxation spectum is
bourded bt not integrable.
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FINAL REMARES

In the paper baged on the properties of coraple tel v rmonotonie fune ions the main necessary
and sufficient condition of the existence and wrdgue ness of nonnegattve integrable relavation spec-
trurn of Linear viscoelastc materials is forrnulated. Other relavation spectm existence conditions
are given in the second part of the paper, where the conditions under which the square infegrable
relaxation spectrun there exists are also dertved. The last is Dmportant for the construction of the
scheres of the relaxation spectm identification known in the literature, for example [Stankiewicz
2004, 2005, 2009] and other works cited therein. The condiions of theorem 1, as well as all the
existence conditions preserted iv the second yart of the paper refer to the Boltmwarn relavation
roodulus, which is arcessible inexperiment.

APPENDIX & - COMPLETELY MONOTONE FUNCTIONS

Definition A. A funcéion f R —R, where R =(000), @5 said fo be complefely moncfonic
imonofone) en (o), if F belong do the elass C70e) and (-1)°F L =0 for anp n=0and § =0
[Bochner 1955, Cripenberg at al. 1990].

Completely raonotorde functions, also known as Bernstein fune tiore, wery irnportant in se-
lectzd sections of funetional analyeis [fogla 2000, Berz and Pedersen 2001], appear naturally in
various fields, like, forexample, probability the oty [Richards 1925] and in fechrdeal aclences [Grin-
shpan at al. 2000]. The main properties of these flnetions are given in [Widder 1946]. We also refer
to corterporary work of &lzer and Berg [200Z], where a defailed list of references on cormpletels
monotonic fianctions carnbe found.

Hausdorff-Bernsiein- Widder Theorem [Bemstein 1928, Widder 1948]. A function
F R —R ofa elass CT(0,w) is complefely moncfone Iff

_,;"'[f}—fe =du(x) £=10, (413

where uis nommagafive Eorel meazure on [0,e) auech that fhe infagral (A1) 15 comvergent for
anp =0, The measre p s jfinife on [0o0) 5F A0+ <+,
The above theorern is known also as Bernstein theorern or Bernstein-Widder theorera.
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O ISTHIENIU I JEDNOZNACZNOSCT SPEKTRUM RELAKS ACII
MATERIALOW LEFKOSPREZYSTYCH
CZESC I PODSTAWOWE TWIERDZENIE

Strerzezende. Badara prowradzore w clagn csinch beyd=iesta latwvkazaly, 1= dogodiym narsed=iern ba-
daria ks nodel moaryeh materiabdoor lepkospresyestieh jest spelimm wlaksac)y. Znayduje ono mstos oaranie
w analime mavask wlaksacymech 1 etad e h zached=ymechowr teh materiatach v szozesdlnoio w poli-
nerach, ale take materistach pochod mma biologrerego. Znajae spekinam relaksani mogma wyznacey® inne,
powrs clie stosoware wochliczermach neynierskich, charakterystda matenaloars talae jak modud relaksaoi
czywimkela pelmra, stale 1 =merme w cmasie woduly odles=taloerma postacinrez ol dojetodoioarego cramwspol-
coyrmik Poissoma. Jego mmajomcsd wmeediaria talese wervikacie spodncdel danyeh pochodzaowch = whdpeh
elsperyimentdar na podstawie towr. spravrdzania krmysosrego. Wnraoywychodzye = fimdarerntalreso dla mate-
riabdnr leplkosprsytch pojecia manikajgre] pareei 1 wykorarstyae wisnosel firkefi w pebi momo toriezoeh
sfoprmbonrane pods tearoary wrananek kormecmiy 1 deostatecmny 1shiema 1 jedromacmnsel spekinim wlaksagi
materiah hnioaro leplospresys tepo. [ime waninla istietna speldmm wlaksac)i pod anowr czesel dmgie] pracy.

Slowa hwrrowe: leplhospresystoid, modal wlalsacii, spelbum wlaksaciy, finkeja w pebn morotoriesna, ist-
ek 1 jednoEnacmices



