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IDENTIFICATION OF THE RELAXATICON AND EETAREDATION
SPECTEA OF PLANT VISCOELASTIC MATEETALS USING
CHEEYSHEW FUNCTIONS
PART I IDENTIFICATION AT GORITHIM

Arnna Stankiewice

Department of Teclwical Sciences
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Summnary. The paper deals with the problens of ®eovery of comtimars wlaxation and retardation specha of
linear viscoelawte matenals fiom discrete-tine noise cormpted meanrements of elaxation moduls and creep
campliatee obtared n stress wlacation and miad shon tests, respectvely In this part of'the paper the ophmal
soheme of the lest-squates appicerimation of the relorshon spectmmby the fivite seves of crthogomal Chebay-
shev fianchos 15 peserted. The problem of ®laxation spectnim iderbification is the practical 1ll-posed prohlem
of recorstmching sobbion of Fredholm irtesral equation ofthe first Jind fiom the meamirved data. Thos, Tikdhono
regulanization 1s used to guarantes the stabibity of the scheme. Genermlized c1o0ss validahon (GCV) 15 adopted
for the optirmal chodce of the regularization parameter. The mimencal reaization of the s chame by wing the
singular vahie decomposition (s WD 15 disoussed and the resultivg compater alzontlon is aitlined . Identhication
of retardatiom s pechum and theowhecal analys s of the model properhes are preserted in the secord part of the
paper. The mmencal stadies ave the subject of the thisd past of the paper where an exangle of the wlawabon
spectham of a sanple of the beet suzar root deternanastion by applying the scheme proposed 15 also presented .
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INTRODUOCTION

The need for detailed knowledgze of mechanical material funetions has heen growing with
the increased use of arcurate engineering methods for rgorons predictons of the plant materi-
als behaviour, such as the firdte element method FELL the boundary elernent method BEL and
the finite difference raethod FOIV [Lemaitre 2001, Chaens and Phillips 200, The soft biological
tnaterials as fiuits and vegetables are most often modeled in & time-domwain viscoelastic regime,
which is good for characte riming strain-stress de pendence, creepand stress relavation withina small
deformation [De Baerde meaker and Segerlind 1976, Fao 1999 Golacki 1998, Fincan and Dejmek
2003]. Although forwiscoelastic materials & rnltiplicity of constitotive theories exists, essentially
only lirear viscoelasticity is considered for which the Boltzmann superposition principle applies.

The mecharical properfies of linear viscoelastic rnaterials ave characterized by relaration or
tefardation spectra [Christensen 1971, Syed Mustapha and Phallipe 2000, Iialkin and Ihsalowa
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2001]. Fror the relawation and retardation spectra other material fiunctions such as the relavation
toodulus or the creep corapliance can be calenlated without diffic ulty, and et both constant as well
ag the time-variable bulk or shear modulus or Poisson’s ratio can be deterznined. Thus, the spectra
are wital not only for constitutive rmodelsbut also for the insight into the properbes of a viscoelastic
material [3ved IWustapha and Phallips 2000, Stankiewicz 2007].

Howewer, the two spectra are not measarable directly, they rost be deterzrined from the
appropriate response function, measared either in Hwe or frequency-domain, These caloulations
require solution of an rveerse problern, which happens to be ill-posed [Hansen 1997, There are a
fewr papers, ez, [Fujthars atal 1995, i and BaZant 2002] as well a5 [Stankiewicz 2005, 2007] and
the other presions payers by the present anthor cite d therein, that deal with the spectra deterrmination
from tirme-rmeasurernent data, but the cormputationally efficient methods to deterrmine the spectra are
ghill desirable and it is the parpose of fhds study

In this peper an optimal orthogonal scheroe s of the least-souare s approxiraation of relaxation
and retardation spectra by the linear corabination of Chebyshew orthogonal functions are proposed.

RELAFEATION BPECTRIM

The uniaxial and isotropic stress-straiv equation for a linear viscoelastic material can he
represented by a Boltmmann superposition integral [Derski and fieraha 1962, Christensen 1971]:

afe) [ a)e{a)dn. (1)
Here of) denotes the stress comresponding to the ghven strain rate £(f) and &#) is the lnear
relaxation modulus. Iodulus Fif), é= 0, is givenby

&) JEE)e o, @

where: the relavation specturm H{v) characterizes the distibmtion of relaation frequencies
vin the range [w, v+ &

The problern of relaxation spectnarn deterra ination is the nurmerical problern of reconstuc ting
solution of Fre dholm integral equation of the first kind (2) of corerolution type from time-measared
discrete relaxation modulus data. This problern is known to be severely Hadamard dl-posed [Han-
sen 1997, Stankiewicz 2007]. Thiz rean, that in particular, sreall changes in measured relazation
modulns can lead to athitrarily larze changesin the relaxation spectium. In remedsy some reduction
of the adimizssible solutions st or respecte regularization of the orginal probler can be used. In
thiz paper we use both the technigues sirltane ously & finite-dimensional approximation of the
spectur by the livear corbination of orthogonal Chebyshes functions will be combined with
Tikhonow regularization.

MODELS

Agmurae that & {v) e {0, @), where L¥0,m) is the space of square-integrable fimctions on
the irndersal (0,00). Let By, b= 0,1, be the Chebyshes functions [Szabatin 1987
e
Biv] J— (3)

T
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B ¥ EF‘J%?;{:I 2]k 12, (4

where: T, are Chebyshesw polymormials of the first kind and a titee-scaling factor ¢ = 0. The
Chebyshey polynornials are ghven by the mowrsive formmula [Szabatin 1987]:

?H:":] =T l{"‘:] % 2{"5]- L T (3
starting with:
T',:.I{J:] 1, TI{J:] = et T;{J:] P ﬂL (A)

Thﬂhguru:t:inns 1A} forra an orthonormal basis of the Hilbert space L0000 with the weight
{g*"“ 1] [Gzabatin 1983, Thus the relaxation spectum canbe expressed as:

o - e o -
2) 3ade™ ) R0 ¥ sk
[ =1
where the nonmalized Chebyshes fune ions:
W) (€ 1) YR, (M

and g, are constants. In order to reduce the set of adrdssible solutions, it is corsendent to
consider the partial sum:

B0 T el 150 T sk ®
Then, the respective model of the :laxaﬁnn randhulus, is dﬁs:ﬁr_j‘;:ued by

Gy l2) THx{v]e * gy § gl ). (%)
where according o (2), the Functions $4(£) are defined as:

2{t) I{fﬂ" R PR Iﬁ{v]g ® ey, (10)

The useful recursmve forn of the basis functions @07 15 ghen by the following theorer, the
proof is ghven in A ppendiz &

Theorem 1. Lef & = 0 and § = 0. Then fhe basis fincfions §4f) are gheen by fhe recurahe
Jormula:

'#'ﬁ{z] 2'#'&1{3] P 2{3] e l{f+20:]. ko34 (11
starting with:

1 LI -

'#'I]{:] ﬂ .:!"'{-;E+1:| L I: :I

o) — Mo, g (13)

Zaofmr  Tl4+2)
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1 _I!"' 3 _I!"' l‘:+ L
#.{(2) o 4&"‘;1“ {Ef_; 3"']'] [#+24" 6az] (14)
where: IT.) is the Enler’s garona functiorn, which is a generalization of n | for noninteger ».
L fewr first basis functions ﬁ,‘{v] are shown in Figure 1 for two different walues of the time-

scaling factor o) the coresponding functions ¢@(f) are plotted in Figure 2. From the fisare 2, it is

evident that the basic functions for relaxation modulus rmodel are in good agresrnent with the real
relaxation modulus obtained in expe e nt.
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Fig. X Fanctiows () of Chebshev alzovitton, the parameers o= 1.5amd o= 15 k=01,234

ATGMENTED MODEL

It 15 well-known that for plant materials venally lim__ Gf = & = 0 [Jakubezydk and Lewicla
2003, Stankiewicz 2007], where &, 1s the long-term modulus. It is also the case of the beet root
sarnple which is considered in the third part of the paper. Thus, instead of the classical mode] (9,
it iz corserdent o consider the following angnerted rodel of the form:
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F{2) J-HK{V].e Ydv+ G, G [f)+G, {15)
a
Ther, the rwlaxation spectrurm rmode] takes the form
Av) H v+ G,8{v) {14)

where: H, (V113 a linear combination of Chebyshesr functions (2) ar@é{v} denotes the Dhrac
delta function. Unbounded coraponent & S(v) of the relavation spectrum &, {v] (16) comresponds
with the relaxation frecuency equal to zero, or equialently; to infinite relaation tivee.

IDENTIFICATION PROBLEM

[dentfication consists of selecting within the ghven class of models defined by (2], (15 such
a model which ensures the best fit to the measwrerent results. Suppose, a certain iderntification
expe e nt (stress relavation test ) performed on the specimen of the material under irvestigation
resulted in a set of meammements of the relaxation modulus E{z‘] {2 )+ z{z,] at the sarpling
mstants § = 0,7 =1, M where 2f ) is additre measurernent noise. Asa rmeasure of the model (9,
(15} accurary the souare index is taken:

L — — H
Gule) T[E ELT B 2wl an
L
where: " ' Iz denotes the square norm in the real Euclidean space, g, = [, w  gey 3]7i5
an (K + D-eleme nt wec tor of unknown coefficients of the rmodel (29, The A=K+ 1}-element matrix
Pp and the vector &, are defined as follows:

tft) o dda) 1 F(4)
S S R - (18)

i) - doda) 1 F(e)

Ther, the identification probler consists of deterrnining the rodel pararneter g, miniroizing
the index (17). The matrix &, ;. is usnally ill-conditioned. Then, the minirr of (17) is not unigue
and even the normal (raindroarn Evclidean nona) solution g¥ of the linear-quadratic probler (17)-
{18} is non-continuous and wrbounded fimetion of the data vectar &, 1e. when the data are noisy
even amall changes in G, would lead to athitrarily large arefact in g Therefore, the numerical
solution of finite dirnensional problera (17)-(12) iz fraught with the sarne difficulties that the original
cortinnons il-posed problern. To deal with the ill-posedne sz, the Tikhonow regulavization method
iz used and presented in the subseguent section.

d"'n\'.k’

REGULARIZATION

Begulanization aims to replace the il-posed problem by a neaby well-posed problern. Tik-
honow regularization [Tikhoros and Brsenin 1977] stives to stabilize the corpntation of the least-
squares solution by rinimizing a modified sguare fiunctional of the fomm:
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i B Bl + 2l (19)

where: A= 01s a regulavization pararneter. The dbove probler is well-poged, that is the solo-
tion always exists, is unique, and continnonsly depends on both the et @, a5 well as on the
measureme nt data &, The mode] parame ter vector minimizing {197 is ghen by,

L —

& {5 Puy k) Ty G (20

where: Iy, p, 18 CEFL(EH]) identity matrie.

The choize of regularization parameter A is creial to idenfifyrthe best mode] paramweters. Here
we applythe gene ralized cross—validation GOV [Golab at al. 1979, Mzuyen at al. 20017, whichdoes
tot depend on @ priori knowledze about the noise wariance . The effectieness of this appeoach in
the context of relaxation spec tur idertification has been werified byrthe early authorse s works, see
[Gtardkiewicz 2007, The GCV technique relies on choosing as regularization peraraeter that Ay
which minitnizes the GCV functional defined by

Vaeol2) (@) /o[l (21)

where: the matrix M) = jm_qﬁm(qﬁ“r B +AI&,‘,IEL,}"¢Mrand A = MDE, is the
residual wector for the regulavized solution (200, #[ASA)] denotes the trace of M)

ALGEERAIC BACEGROUND

For the cormputationsl parposes the elegant forrenda (200 iz generally unsuitable . For nuner-
cal cormpmtation of regularized solution, the singular walue decormposition {3V D) techricue will be
used. Let SVD of the (E+1)={EH) dime nsonal matnx ¥y di-MTdiM takes the form:

g

¥ &

E

' Py VIV, {43)

where: ¥V e 2% iz orthogonal matix and T = diagle,..0.0,..0) is (EH o E+H) diago-
nal matrix containing the non-zero singular values oy, o, of the matrix ¥, with r = rankd ¥,
[Fiethasifiski and Seclowetlick 1994 Taking advartaze of the diagonal struetore of I and the matrix
I orthogonality, it maybe sivply peoved that [ tarddewicz 2007

B VRLVID,TE, (24)
where the diagonal stucture ratix 03 s as follows:
) =diggl 1o, + A, 18 H),14,. 1A (23

Using 5V (23) also the GOV function (21) can be expressed by a corrrenient forroala:

2
{2 |8fe, $22 o My av | (26)
-:.t'r-'{ ] w §{5‘+E]2 e )
as a fnction of singular values o,,....7, and elements p, of the vectr¥ ¥ &, "G, (see
Lppendie C8 in [Stanldewicz 2007]). The function Foo{1) is differentiable for any A, thus an
athitrary gradient optirmization method canbe implermented to solve the GOV minirmization task.
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IDENTIFICATION SCHELIE

Lllowing the abore, the calculation of the relaxation model ivsolves the following stepes.

1. Perforrn the experitaent - stress relaxation test [Fao 1999, Golacki 1995] - and record the
measmrements e, 7= 1,. M of the relaxation modulns at times ¢, = 0.

2. Compnite the matrices &, (18], ¥, . (23) and next deterrmine VD (23) of ¥,

3. Deterraine GCV function ¥ 4A) (26), and next corgnte the optirnal regularization pa-
ramne ter A minimizing ¥ L04).

4. Compnte the regulanzed solubion gier according to (24) and (25) ford = 4.,

5. Deterraine the spectim of relaxation frequencies Hiw) according to {cf. (2)):

B(r) T ek k() an

Obrviously, A, {v] A, {+]+G,5{v) is the relaxation spectrum of the form (16).

Remark 1. Only the 5VD of the matrix ¥, 15 space and tire consuming task of the scheme.
The SVD is accessible in the fonn of optirized nrne rcal proce dures in most corrmorly wsed con-
termporary compmtational packets (for exarmyple, swdlA) in Dbthead 7.0, [T.5 F=swdlA) in Mlatlab
6.5, MabrixSingular Felues Decomp(A U5 1) n Statistica 5.5).

Remark 2. [tiseasvto note that the matx ¥, depends on the choice of the basic functions
a8 well as the measurement points (£}, howeser does not depend in the experiment results. Thus,
when the dentification scherne iz applied for successve saraples of the material, the step 2 have
not to be moultiple repeated while the sarne measurerient points {#} are keeped.

Remark 3. Morrnalized Chebyshew functions }‘i {v] defiried by the forrmla (30, (4 and (1
can be determined using Chebyshew polymordals Ti(x). Polsmomdals T0x) are accessible in some
cornputational packets; the v imavhe also coraputed according to sitnple recursive forraula (53-(6).

Remark 4. In the schere proposed the parameter ¢ = 0 1z the time-scaling factor. The fol-
lowing rule holds: the lowr the pararneter o is, the shorer the relavation firnes are, 1e. the greater
are the relawation frequencies. The abowve iz illustrated by figures 1 and 2. Bor the optitnal choiee
of the scalivg factor, the best fit of the model to the experimental data can be achiesed. Howewver,
in practice a sirple rough rile for choosing the acaling factor ¢, based on the comparizon of a few
first fune tions frorn the secuence {@(#)} for different valnes of ¢ with the experimentally obtained
function F(f) iz quite enough. In the same manner, the morber K of the series (3 elements canbe
initially evaluated. Thus, the choice both of the nuraber K as well as the parameter o roustbe done
@ posferiort, after the prelived nary experirnent data analyeis.

CONCLUSIONZ

Ln alzorithin has been found for the caleulation of relaxation frequencies spectian frorn the
toeasurerre it data of the relaxation modulus discrete-firne measrements. The approach propossdis
based on the approxiration of the spectnun by finite line ar corabiration of the Chebyshes functions.
Lnanalysis of the identification scherne and resulted mode ] propertes is the subject of the second
part of the paper. The rumerical experimental studies will be also conducted and the effec theness
of the me thod willbe demonstrated through the coraputation of the relaxation specturm of the beet
suzar root sample in the third part of the paper
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AFPENDIE &

Proofof Theorem L. Suppose o =0 Let us firet derive the forrnalas (12), (137 and (14). Since
Tix)=1, for k=0 substituting e =uin ol f) after siriple ranipulations we obtain:

2a12) JET £ 1 e o ’ j{1 wF ™ (41)

whence, using the well-lmown Enler Pl:ulssummiegml_[ 1= o L I{m) L) f 7 {m+n)
where IT.) 15 the Euler’s gamma functior, we finally obtain eq. (12).
For k=1, the Chebyshew polynordal Fi0x) = x and the integral $ (f can be expressed as a

ST

ar a;:cu:urding o {Px 17 as follows ¢ (8 = 24,06 — ¢y + 2e). Then, frorn eq. (12) we obtain

f £+1 r F11f13‘5+5—
—‘—+1 —‘—+2 ’

and wl'Leru:e, nsing the Well-kmum prc'perhes n:-f'the Garama fanetion Tx+10) = x0x), after
sitrple alzebraic mardpmlations we ohtain firallyeq. (13).

For k=2 the Chebyshenr polymordal Tix) = 1 =102, thus according to (4, (10) and taking
account of (&.1) the integral $.{f) can be written as @) = 28080 — 1640 20)+H16 @ f Hdad, and
hence, on the basis of (120 we obtain the (14).

Mo, it rernains to show that (113 hold for any b= 3. Becalling the identity (30 and using (4)
and (79 we obtain;

ﬂk{v] 2{1 2a 2"“]171”,= o) i, ) 2, r) e s 4 ¥ i ) (b2

whence, inview of the definition (10} we obtain finally (11), which concludes the proof.
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IDENTYFIKACIA GPEETRE REL AKSACI T RETARDACII LEPKOSFREZVITYCH
LIATERIALOW ROSLINNYCH Z WY KORZYSTANIENM FUNKCIT CZERY 32EWA
CEESC L ALGORYTM IDEN TV FIKACTI

Streszemnde, W pracy romarata sie proh lemyrenrmarzaria cigg beh spelt wlaksacy 1retardac) lriownrch mate-
nader lephosprezrstreh ma podstaarie dys loetiorch mmlddooryeh pontarder modubs elaksacy 1 fankejl pelzana
zerottadzorpeh, odpownedmo, w testach wlaksac) napresen oraz wtadagi. W te) czefel pracy przestasnono
sohernat apwoksyrmacy speletmm relalesacii shofiomong sy crtogonaliech fianleoji Cmabys mara ophmmalne
W sensie nanue)sze] sumy beralmtder, Problem dermyikacyi spekiom relaksami to Zle postasriony problam
mmeryemes o weaigzania catkorezo warnania Fredholma pieverszeso rod=am na podstaede dyslretch po-
nuarow modubs relaksagi. Dla stabihizami jego moarigmrma zastosowrano teclouke waulav=aoi Tichonoara,
Optymaby dcbhdr parametn regularyzac)l zapewrnanogdlmona wetoda spraed zania kimyeowregzo (GOV Ch-
liczenia mmureryeere algorybn oparto o teclmike dekommpompdl maciersy wegledem waribiel soomezdlimprh
[SVLN). [dertyrhkacga speliom retardac)i oraz analiza wlasnoéel teowtyezoreh metody 53 presd nuotem dmzig
omes ol pracy. Whmild badah mmerremnrch preeds tarriono wr je) czefol teeels), w kidre) podane takse pemddad
zastosowratia opracoaraneso algoryhm dowyznacmeia spekimm wlaksac)l prdblki buraka eloosregzo.

Slowa Mhwrowe: lepkosprsystodd, spektmm wlaksacii, idertyfikacia, regularpzacia, finkeje Chyszara



