MOTROL, 2006, 8A, 117–124

АНАЛИЗ РАЗВИТИЯ УСТАЛОСТНЫХ ТРЕЩИН В АЛЮМИНИЕВОМ СПЛАВЕ ПРИ ЦИКЛИЧЕСКОМ НАГРУЖЕНИИ

Oleg Chernysh

* National Agrarian University of Ukraine, Kyiv

Аннотация. Экспериментально исследовано влияние асимметрии цикла нагружения на закономерности развития усталостных трещин в алюминиевом сплаве Д1Т в диапазоне температур 77 – 363К.

Ключевые слова: усталостная трещина, асимметрия цикла нагружения, температура, алюминиевый сплав

ВВЕДЕНИЕ

Линейная механика разрушения создает новые перспективы для расчетов на прочность и долговечность элементов конструкций в условиях воздействя переменных нагрузок, которые в сочетании с эксплуатационными факторами существенно влияют на сопротивление усталостному разрушению.

При этом интерес вызывают характеристики циклической трещиностойкости материалов рассчитываемых конструкций и, в частности, кинетические диаграммы усталостного разрушения материалов, которые характеризуют процесс усталостного разрушения на стадии развития трещины.

АНАЛИЗ ПУБЛИКАЦИЙ ПО ДАННОЙ ПРОБЛЕМЕ

Для описания кинетических диаграмм чаще всего применяют формулу Париса [РД 50–345–82], связывающую скорость роста усталостной трещины с размахом коэффициента интенсивности напряжений. Однако по литературным данным существует более шестидесяти зависимостей, которые связывают скорость роста усталостной трещины с параметрами нагружения и механическими свойствами материалов [Парис, Эрдоган 1963, Школьник 1973, Гуревич, Едидович 1974, Черныш 1992]. Универсальной аналитической зависимости, отражающей особенности усталостного разрушения с учетом всего многообразия факторов эксплуатации для различных материалов и позволяющей прогнозировать этот процесс, до сих пор не найдено.

ПОСТАНОВКА ЗАДАЧИ

Исходя из вышеизложенного, обобщение экспериментально установленных характеристик трещиностойкости с изучением влияния на них таких факторов как температура эксплуатации и асимметрия цикла нагружения, имеет практический интерес.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ

Для исследований был выбран алюминиевый сплав Д1Т, который используется в конструкциях и оборудовании, рабочие элементы которых могут быть подвержены одновременному действию динамических и статических нагрузок в диапазоне температур от 77К до 363К.

Механические свойства сплава в зависимости от температуры представлены в табл. 1.

Температура Т. К	$\sigma_{_{ extsf{ heta}}},$ MIIa	σ_t , MIIa	ho, H/M ³	δ , %	ψ,
363	404	241	$2.74.10^4$.	16.6	16.7
203	404	241	2,74 10 .	15.0	13.6
172	433 504	203		15,0	13,0
173	524	390		15,5	12,6
17	650	489		16,0	16,3

Таблица 1. Механические свойства сплава Д1Т Table 1. The mechanical properties of D1T alloy

При получении характеристик циклической трещиностойкости использовались образцы прямоугольного сечения 5×10 мм с надрезом, которые консольно закреплялись на столе вибростенда.

Нагружение осуществляли по первой изгибной форме колебаний при частоте 200-400 Гц. Статические напряжения при асимметричном нагружении создавались растяжением свободного конца образца при помощи гибкой тяги с контролем текущей величины растяжения.

Для изучения влияния низких и высоких температур при проведении испытаний применялась термокамера с подачей жидкого азота в рабочую область образца или с нагревательными элементами соответственно.

Методика проведения испытаний и учета изменения податливости образца при росте в нем трещины изложена в [Школьник 1973, Трощенко, Сосновский 1987].

В соответствии с данной методикой коэффициенты интенсивности напряжений для образца с трещиной от изгибающей нагрузки при вибрационном нагружении определялись формулами:

$$K_{III} = \xi_{a\neq 0} \cdot Y_{II} \cdot \sqrt{a} \cdot F = S \cdot F, \tag{1}$$

$$Y_{H} = 1,99 - 2,47\frac{a}{h} + 12,97\left(\frac{a}{h}\right)^{2} - 23,17\left(\frac{a}{h}\right)^{3} - 24,8\left(\frac{a}{h}\right)^{4},$$
 (2)

где:

 $\xi_{a\neq 0}$ – коэффициент связи между напряжениями от изгиба $\sigma_{\dot{E}}$ и размахом *F* свободного конца образца с трещиной, учитывающий изменение податливости образца при росте трещины,

 Y_{II} – геометрический фактор,

а – длина трещины в образце.

При этом $\xi_{a\neq 0}$ определяется зависимостями:

$$\xi_{a\neq 0} = \xi_{a=0} \cdot \frac{2}{r+r^2},$$
(3)

$$r = \frac{f_{a\neq0}'' / P_{a\neq0}''}{f_{a\neq0}' / P_{a\neq0}'},$$
(4)

где:

 $\xi_{a=0}$ – коэффициент связи между напряжениями от изгиба и размахом свободного конца образца без трещины,

г – отношение податливости образца в сторону раскрытия и закрытия трещины.

Значение $\xi_{a=0}$ выражения

$$\sigma_{\mu} = \xi_{a=0} \cdot F \tag{5}$$

определялось тарировкой образца в месте его рабочего сечения методами тензометрирования.

Податливость образца с трещиной при действии изгибающего усилия $P_{a\neq 0}$ в сторону раскрытия и закрытия трещины может быть выражена соответственно:

$$\frac{f'_{a\neq0}}{P'_{a\neq0}} = \frac{L}{2\xi_{a=0} \cdot W},\tag{6}$$

$$\frac{f''_{a\neq 0}}{P''_{a\neq 0}} = \frac{6^2 L^2 (l - \mu^2)}{b h^4 E} \cdot \int_0^a Y^2 a da - \frac{f'_{a\neq 0}}{P'_{a\neq 0}},$$
(7)

где:

 $f'_{a\neq 0}$, $f''_{a\neq 0}$ – величина прогиба образца в крайнем верхнем и нижнем положении соответственно,

W – момент сопротивления рабочего сечения образца,

L,*b*,*h* – соответственно длина, ширина и высота образца,

Е – модуль Юнга,

μ – коэффициент Пуассона.

При этом податливость образца с трещиной в направлении закрытия трещины $\frac{f'_{a\neq 0}}{P'_{a\neq 0}}$ остается постоянной и равной податливости образца без трещины

практически при $\frac{a}{h}$ <0,7, а податливость в направлении раскрытия трещины $\frac{f_{a\neq 0}''}{P_{a\neq 0}''}$

снижается по мере роста трещины.

С учетом упругих постоянных по формуле (1) можно определить зависимость параметра *S* от размера трещины образца в виде:

$$S = \xi_{a\neq 0} \cdot Y_U \cdot \sqrt{a}. \tag{8}$$

Коэффициент интенсивности напряжений от растягивающей нагрузки P_p в образце с односторонней трещиной рассчитывали по формулам:

$$K_{IP} = Y_P \cdot \sigma_P \cdot \sqrt{a},\tag{9}$$

$$Y_{P} = 1,99 - 0,41\frac{a}{h} + 18,7\left(\frac{a}{h}\right)^{2} - 38,48\left(\frac{a}{h}\right)^{3} - 53,85\left(\frac{a}{h}\right)^{4},$$
 (10)

где:

 σ_p – напряжение растяжения,

а – длина трещины,

h – высота рабочего сечения образца.

При этом напряжение σ_p определяется величиной растягивающего усилия P_p и размерами рабочего сечения образца в зоне развития трещины:

$$\sigma_p = \frac{P_p}{bh},\tag{11}$$

где:

b – ширина рабочего сечения образца.

Величину размаха коэффициента интенсивности напряжений ΔK_I и коэффициента асимметрии цикла нагружения *R* определяли по формулам:

$$\Delta K_I = K_{III} + K_{IP} \qquad \text{при } R < 0, \tag{12}$$

$$\Delta K_I = 2K_{III} \qquad \qquad \text{при } R \ge 0, \tag{13}$$

$$R = \frac{K_{IP} - K_{IH}}{K_{IP} + K_{IH}}.$$
(14)

При росте трещины податливость образца постепенно уменьшается, поэтому для поддержания постоянной асимметрии цикла нагружения R при испытаниях необходимо корректировать размах F колебаний свободного конца образца по зависимости:

$$F = \frac{1}{\xi_{a\neq 0}} \cdot \frac{Y_P(1-R)}{Y_H(1+R)} \cdot \sigma_P.$$
(15)

При температурах, отличных от T = 293 K, тарировку не производили, а величину $\xi_{a=0}$ в выражении (3) определяли пропорционально изменению модуля упругости материала образца в связи с изменением температуры:

$$\xi_{a=0} = \xi_{a=0}^{T=293K} \cdot \frac{E^T}{E^{T=293K}},$$
(16)

где:

 $\xi_{a=0}^{T=293K}$ – тарировочный коэффициент при температуре T = 293 K, E^{T} – модуль упругости материала требуемой температуры испытаний, $E^{T=293K}$ – модуль упругости материала при температуре T = 293 K.

С учетом (16) параметр *S* из выражения (8) рассчитывали по зависимости:

$$S^{T} = S^{T=293K} \cdot \frac{E^{T}}{E^{T=293K}}.$$
(17)

Аналогично определялся из (15) размах колебаний свободного конца образца:

$$F^{T} = F^{T=293K} \cdot \frac{E^{T}}{E^{T=293K}}.$$
(18)

Методика проведения эксперимента соответствовала рекомендациям работы [Трощенко, Сосновский 1987].

Значения величин скорости роста трещины получали путем деления приращения длины трещины на число циклов, за которое это приращение произошло. За ростом трещины наблюдали в микроскоп с ценой деления 0,014мм, поэтому приращение брали не менее 0,14 мм.

Пороговый размах коэффициента интенсивности напряжений ΔK_{th} получали при условии нераспространения трещины при его значении в течение $4 \cdot 10^6$ циклов и не превышении скорости роста трещины $1 \cdot 10^9$ мм/цикл. При этом устраняли переходные зоны в вершине трещины, для чего нагрузку снижали ступенями не более 5%.

Результаты исследования циклической трещиностойкости материала Д1Т при значениях коэффициента асимметрии цикла нагружения R = -1,0, 0,5 0,7 и температурах T = 363 K, 293 K, 173 K, 77 K обобщены в табл. 2 и на рис. 1.

Величины пороговых коэффициентов интенсивности напряжений ΔK_{th} , в диапазоне температур проведения эксперимента и асимметрии цикла нагружения показаны на рис. 1.

Рис.1. Пороговые коэффициенты интенсивности напряжений сплава Д1Т при различных температурах и асимметриях цикла нагружения

Fig. 1. Limiting coefficients of D1T alloy intensive stresses at different temperatures and asymmetric loading cycles

Коэффициенты А и п в уравнении Париса

$$\frac{da}{dN} = A(\Delta K)^n,\tag{19}$$

где:

 $\frac{da}{dN}$ – скорость роста усталостной трещины на участке ее стабильного развития,

 ΔK – размах коэффициента интенсивности напряжений, при аппроксимации линейного участка диаграмм усталостного разрушения исследуемого материала приведены в табл. 2.

Т, К	R	$\Delta K_{th},$ МПа $\sqrt{_{ m M}}$	n	А
363	-1	1,057	3,51	1,08 10 -11
	0	1,368	3,51	1,08 10 -11
	0,5	1,246	3,51	1,08 10 -11
	0,7	1,088	3,51	1,08 10 -11
293	-1	2,768	3,61	1,45 10 -11
	0	1,493	3,08	3,84 10 -11
	0,5	1,12	2,34	1,81 10 ⁻⁹
	0,7	0,933	2,21	4,24 10 -9
173	-1	8,77	5,64	1,29 10 ⁻¹⁷
	0	6,872	4,15	6,98 10 ⁻¹⁴
	0,5	4,976	3,59	1,2 10 -12
	0,7	4,385	3,59	1,2 10 -12
77	-1	5,598	3,56	1,12 10 -12
	0	5,753	3,56	1,12 10 -12
	0,5	5,007	3,56	1,12 10 -12
	0,7	4,478	3,56	1,12 10 -12

Таблица 2. Результаты исследований
Table 2. Results of tests

Анализ результатов показывает, что асимметрия цикла нагружения R не влияет на скорость роста трещины при температуре 363 К и мало влияет при температуре 77 К. При температурах 293 К и 173 К изменение R приводит к сильному расслоению диаграмм усталостного разрушения. Так, при T = 293 К и $\Delta K = 4,6$ МПа \sqrt{M} скорость роста трещины при R = -1 на порядок меньше этой характеристики при R = 0,7.

Зависимость усредненных значений пороговых коэффициентов интенсивности напряжений ΔK_{th} от асимметрии цикла нагружения в интервале температур от 77 К до 363 К показала, что асимметрия цикла существенно влияет на величины ΔK_{th} при 293 К и 173К и незначительно – при 363 К и 77 К.

Понижение температуры приводит к увеличению сопротивления усталостному разрушению. Скорость роста трещины снижается, а пороговые значения коэффициентов интенсивности напряжений повышаются. При температурах 293 К и 363 К сплав Д1Т имеет минимальные характеристики трещиностойкости в диапазоне исследованных температур. Снижение температуры до 173 К и 77 К приводит к значительному уменьшению скорости роста усталостных трещин на 1-2 порядка и увеличению пороговых значений коэффициентов интенсивности напряжений в 3-4 раза.

выводы

1. Обобщены характеристики циклической трещиностойкости алюминиевого сплава Д1Т, используемого в конструкциях и деталях тел вращения в диапазоне температур 77 К...363 К и коэффициентах асимметрии цикла нагружения – 1...0,7.

2. Отрицательные температуры повышают сопротивление росту усталостных трещин в данном материале.

3. Наименьшие характеристики циклической трещиностойкости материала наблюдаются при положительных температурах и максимальных значениях коэффициента асимметрии цикла нагружения 0,7; 0,8. При этом изменение температуры с 293 К до 363 К сказывается незначительно.

ЛИТЕРАТУРА

- Гуревич С.Е., Едидович Л.Д. 1974: О скорости распространения трещины и пороговых значениях коэффициента интенсивности напряжений в процессе усталостного разрушения. Усталость и вязкость разрушения металлов. Наука. 63–83.
- Парис П., Эрдоган Ф. 1963: Критический анализ законов распространения трещины. Техн. Механика. 4, 60–68.
- РД 50–345–82. Расчеты и испытания на прочность. Методы механических испытаний металлов. Определение характеристик трещиностойкости (вязкости разрушения) при циклическом нагружении: (Метод.указания). Изд–во стандартов, 1982, 56 с.
- Трощенко В.Т., Сосновский Л.А. 1987: Сопротивление усталости металлов и сплавов. Наук. думка т. 2, 504 с.
- Черныш О.Н. 1992: Оценка живучести и обеспечение надежности крупногабаритных лопаток осевого компрессора. Автореф. дис. канд. техн. наук. Ин-т проблем прочности АН Украины, 16 с.

Школьник Л.М. 1973: Скорость роста трещин и живучесть металла. Металлургия, 215 с.

ANALYSIS OF DEVELOPMENT OF FATIGUE CRACKS IN AN ALUMINIUM ALLOY AT THE CYCLIC LOADING

Summary. Influencing of asymmetry of cycle of loading on conformity to the law of development of fatigue cracks in the aluminium alloy Д1T in the range of the temperatures 77–363 K is experimentally explored.

Key words: fatigue crack, asymmetry of cycle of loading, temperature, aluminium alloy

Reviewer: Volodymyr Bulgakov, Prof. Sc. D. Eng.