ТЕОРЕТИЧЕСКОЕ ИССЛЕДОВАНИЕ ПО ОПРЕДЕЛЕНИЮ МОМЕНТОВ СИЛ УПРУГОСТИ НА ВАЛАХ ПОДЪЕМНОЙ УСТАНОВКИ И УСИЛИЙ В КАНАТАХ ПЕРЕМЕННОЙ ДЛИНЫ

Volodymyr Bulgakov*, Volodymyr Kostyuchenko**, Viktor Misko**, Ivan Holovach*

- * National Agrarian University of Ukraine, Kyiv
- ** Marine Institute of Technology in Kerch, Ukraine

Аннотация. Представлено решение второй основной задачи динамики стального каната переменной длины одним из возможных методов.

Ключевые слова: подъемная установка, стальной канат, расчетная модель, дифференциальные уравнения

ВВЕДЕНИЕ

В настоящее время широкое распространение получили башенные теплицы и подземные гидропонные цеха. Доставка исходного посевного материала на большие высоты и глубины, а также вывоз выращенного урожая может в данном случае осуществляться только с помощью подъемных канатных установок. Поэтому необходимо создание обоснованной инженерной методики расчета указанных установок с целью обоснования их рациональных конструктивнотехнологических параметров.

АНАЛИЗ ИССЛЕДОВАНИЙ И ПУБЛИКАЦИЙ ПО ДАННОЙ ПРОБЛЕМЕ

В работе [Костюченко и др. 2004] составлены дифференциальные уравнения динамики однобарабанных и двухбарабанных подъемных установок как единого электромеханического комплекса. Полученные дифференциальные уравнения могут быть использованы для расчета усилий в канатах и моментов сил упругости в валах барабана при любых режимах работы установки.

ЦЕЛЬ ИССЛЕДОВАНИЙ

Определение моментов сил упругости в валах барабанов и усилий в канатах переменной длины, на основании решения полученных в работе [Костюченко и др. 2004] дифференциальных уравнений динамики двухбарабанной подъемной установки.

СОДЕРЖАНИЕ ИССЛЕДОВАНИЙ

Приведенную в работе [Костюченко и др. 2004] систему шести нелинейных дифференциальных уравнений, описывающих динамику двухбарабанной установки следующей заменой переменных:

$$\varphi_{1} = \varphi_{1},
\varphi_{2} - \widetilde{\varphi}_{2} = \varphi_{1},
\varphi_{3} - \widetilde{\varphi}_{3} = \varphi_{1},
\varphi_{4} - \widetilde{\varphi}_{4} = \varphi_{1},$$
(1)

представим в виде:

$$\begin{split} &\widetilde{\ddot{\varphi}}_{2}+\omega_{2}^{2}\widetilde{\varphi}_{2}-\grave{a}_{0}\widetilde{\varphi}_{3}=-D_{2}(t),\\ &\widetilde{\ddot{\varphi}}_{3}+\omega_{3}^{2}\widetilde{\varphi}_{3}+b_{0}\widetilde{\varphi}_{2}-b_{1}\widetilde{\varphi}_{4}+b_{2}\ddot{O}_{1}=D_{3}(t)+f_{3}(t,\widetilde{\varphi}_{3},\widetilde{\dot{\varphi}}_{3},\widetilde{\dot{\varphi}}_{3},\widetilde{\dot{\varphi}}_{3},\mathring{O}_{1},\mathring{O}_{1}),\\ &\widetilde{\ddot{\varphi}}_{4}+\omega_{4}^{2}\widetilde{\varphi}_{4}-\tilde{n}_{0}\widetilde{\varphi}_{3}+\tilde{n}_{1}\widetilde{\varphi}_{2}-\tilde{n}_{2}\ddot{O}_{3}=-D_{4}(t)+f_{4}(t,\widetilde{\varphi}_{4},\widetilde{\dot{\varphi}}_{4},\widetilde{\dot{\varphi}}_{4},\mathring{O}_{3},\mathring{O}_{3}),\\ &\widetilde{O}_{1}+\omega_{5}^{2}\hat{O}_{1}+d_{0}\widetilde{\ddot{\varphi}}_{3}-d_{1}\widetilde{\varphi}_{3}+d_{2}\widetilde{\varphi}_{2}=P_{5}(t)+f_{5}(t,\widetilde{\varphi}_{3},\widetilde{\dot{\varphi}}_{3},\widetilde{\dot{\varphi}}_{3},\widetilde{O}_{1},\mathring{O}_{1}),\\ &\widetilde{O}_{3}+\omega_{6}^{2}\hat{O}_{3}-n_{0}\widetilde{\ddot{\varphi}}_{4}+n_{1}\widetilde{\varphi}_{4}-n_{2}\widetilde{\varphi}_{2}=P_{6}(t)+f_{6}(t,\widetilde{\varphi}_{4},\widetilde{\dot{\varphi}}_{4},\widetilde{\dot{\varphi}}_{4},\mathring{O}_{3},\mathring{O}_{3}),\\ &\ddot{\varphi}_{1}=\frac{M_{1}(t)}{I_{1}}+\frac{\tilde{n}_{12}}{I_{1}}\widetilde{\varphi}_{2}. \end{split}$$

где:

 $\widetilde{oldsymbol{arphi}}_i$ – относительные углы закручивания дискретных масс машины;

$$\begin{split} \omega_2^2 &= \frac{\tilde{n}_{23} + \tilde{n}_{12}}{I_2} + \frac{\tilde{n}_{12}}{I_1} \,, \quad a_0 = \frac{\tilde{n}_{23}}{I_2} \,; \\ \omega_3^2 &= \frac{\tilde{n}_{34} + \tilde{n}_{23} + qR^2 - \frac{qR^3}{g} \, \ddot{\varphi}_1}{\Delta_1} \,, \quad b_0 = \frac{\tilde{n}_{12}}{I_1} - \frac{\tilde{n}_{23}}{\Delta_1} \,, \quad b_1 = \frac{\tilde{n}_{34}}{\Delta_1} \,, \\ b_2 &= R l_{01} \bigg(Q_1 + \frac{q l_{01}}{2} \bigg) \frac{1}{g \Delta_1} \,; \end{split}$$

$$\begin{split} & \omega_{4}^{2} = \frac{\tilde{n}_{34} - qR^{2}}{\Delta_{2}}, \quad \tilde{n}_{0} = \frac{\tilde{n}_{34}}{\Delta_{2}}, \quad \tilde{n}_{1} = \frac{\tilde{n}_{12}}{I_{1}}, \quad \tilde{n}_{2} = \frac{Rl_{02}\left(Q_{2} + \frac{ql_{02}}{2}\right)}{g\Delta_{2}}; \\ & \omega_{5}^{2} = \frac{kg}{\Delta_{3}}, \quad d_{0} = \frac{R\left(Q_{1} + \frac{ql_{01}}{2}\right)}{\Delta_{3}}, \\ & d_{1} = \frac{qR}{2\Delta_{3}}\left(g - R\ddot{\varphi}_{1}\right), \quad d_{2} = \frac{R\tilde{n}_{12}\left(Q_{1} + \frac{ql_{01}}{2}\right)}{I_{1}\Delta_{3}}; \\ & \omega_{6}^{2} = \frac{kg}{\Delta_{4}}, \quad n_{0} = \frac{R\left(Q_{2} + \frac{ql_{02}}{2}\right)}{\Delta_{4}}, \\ & n_{2} = \frac{R\tilde{n}_{12}\left(Q_{2} + \frac{ql_{02}}{2}\right)}{I_{1}\Delta_{4}}, \quad n_{1} = \frac{qR\left(g - R\ddot{\varphi}_{1}\right)}{2\Delta_{4}}; \\ & \Delta_{1} = I_{3} + \frac{R^{2}}{g}\left(Q_{1} + \frac{ql_{01}}{3}\right), \quad \Delta_{2} = I_{4} + \frac{R^{2}}{g}\left(Q_{2} + \frac{ql_{02}}{3}\right), \\ & \Delta_{3} = l_{01}\left(Q_{1} + \frac{ql_{01}}{3}\right), \quad \Delta_{4} = l_{02}\left(Q_{2} + \frac{ql_{02}}{3}\right); \\ & P_{2} = \frac{M_{1}}{I_{1}}, \\ & P_{3} = \frac{\left(Q_{1} + ql_{01}\right)R}{\Delta_{1}} - P_{2} - \frac{M_{3}}{\Delta_{1}} + \frac{qR^{2}\varphi_{1}}{\Delta_{1}}\left(1 - \frac{R\ddot{\varphi}_{1}}{g}\right), \\ & P_{4} = \frac{\left(Q_{2} + ql_{02}\right)R}{\Delta_{2}} + P_{2} - \frac{M_{4}}{\Delta_{2}} + \frac{qR^{2}\varphi_{1}}{\Delta_{2}}\left(1 + \frac{R\ddot{\varphi}_{1}}{g}\right), \\ & P_{5} = \frac{g\left(Q_{1} + \frac{ql_{01}}{2}\right)}{\Delta_{4}}\left(1 - \frac{R}{g}P_{2}\right) + \frac{qR\varphi_{1}}{2\Delta_{3}}\left(g - R\ddot{\varphi}_{1}\right). \end{aligned}$$

$$(3)$$

$$\begin{split} f_3 &= \frac{qR^3}{g\Delta_1} \Big(\varphi_1 \tilde{\varphi}_3 + \tilde{\varphi}_3 \tilde{\varphi}_3 \Big) - \frac{R^2 (\varphi_1 - \tilde{\varphi}_3) \bigg[(Q_1 + ql_{01}) + \frac{qR}{g} (\varphi_1 + \tilde{\varphi}_3) \bigg]}{g\Delta_1} \tilde{O}_1 - \\ &- \frac{\left(\dot{\varphi}_1 + \tilde{\varphi}_3\right) R \bigg[(Q_1 + ql_{01}) R + qR^2 (\varphi_1 + \varphi_3) \bigg]}{g\Delta_1} \hat{O}_1 \,, \\ f_4 &= \frac{qR^3}{g\Delta_2} \Big(\varphi_1 \tilde{\varphi}_4 + \tilde{\varphi}_4 \tilde{\varphi}_4 \Big) - \frac{R^2 (\varphi_1 - \tilde{\varphi}_4) \bigg[(Q_2 + ql_{02}) - \frac{qR}{g} (\varphi_1 + \tilde{\varphi}_4) \bigg]}{g\Delta_2} \tilde{O}_3 \,, \\ &- \frac{\left(\dot{\varphi}_1 + \tilde{\varphi}_4\right) R \bigg[(Q_2 + ql_{02}) R - qR^2 (\varphi_1 + \tilde{\varphi}_4) \bigg]}{g\Delta_2} \hat{O}_3 \,, \\ f_5 &= -\frac{qR^2}{2\Delta_3} \Big(\varphi_1 \tilde{\varphi}_3 + \tilde{\varphi}_3 \tilde{\varphi}_3 \tilde{\varphi}_3 \Big) - \frac{R \left(\varphi_1 + \tilde{\varphi}_3 \right) \bigg[\left(Q_1 + \frac{ql_{01}}{3} \right) + \frac{qR}{3} (\varphi_1 + \tilde{\varphi}_3) \bigg]}{\Delta_3} \tilde{O}_1 \,, \\ &- \frac{\left(\dot{\varphi}_1 + \tilde{\varphi}_3\right) R \bigg[\bigg[Q_1 + \frac{ql_{01}}{2} \bigg] + \frac{qR}{2} (\varphi_1 + \tilde{\varphi}_3) + g\alpha \bigg]}{\Delta_3} \hat{O}_1 \,, \\ f_6 &= -\frac{qR^2}{2\Delta_4} \Big(\varphi_1 \tilde{\varphi}_4 + \tilde{\varphi}_4 \tilde{\varphi}_4 \Big) + \frac{R \left(\varphi_1 + \tilde{\varphi}_4 \right) \bigg[\left(Q_2 + \frac{ql_{01}}{3} \right) - \frac{qR}{3} (\varphi_1 + \tilde{\varphi}_4) \bigg]}{\Delta_4} \tilde{O}_3 \,, \\ &+ \underbrace{\bigg[\left(\dot{\varphi}_1 + \tilde{\varphi}_4\right) R \bigg\{ \bigg[Q_2 + \frac{ql_{02}}{2} \bigg] - \frac{qR}{2} (\varphi_1 + \tilde{\varphi}_4) \bigg\} - g\alpha \bigg]}_{\Delta_3} \hat{O}_3 \,. \end{split}$$

Будем полагать, что за время, в течение которого достигаются максимальные усилия в упругих элементах установки, функции $P_i(i=1,2,3,4,5,6)$ медленно изменяются со временем и являются адиабатическими постоянными [Ландау и Лифшиц 1965, Фещенко 1966]. Учитывая сказанное, положим

$$\widetilde{\varphi}_{2} = \varphi_{2} + \mathring{A}_{2}(t),
\widetilde{\varphi}_{3} = \varphi_{3} + \mathring{A}_{3}(t),
\widetilde{\varphi}_{4} = \varphi_{4} + \mathring{A}_{4}(t),
\widehat{O}_{1} = \widehat{O}_{1}^{*} + \mathring{A}_{5}(t),
\widehat{O}_{3} = \widehat{O}_{3}^{*} + \mathring{A}_{6}(t).$$
(4)

Подставляя (4) в (2), для определения A_i (i = 1, 2, 3, 4, 5, 6) получим следующие выражения:

$$\dot{A}_{2} = \frac{1}{\omega_{2}^{2}} (\dot{a}_{0} \delta + D_{2}), \quad \dot{A}_{3} = \delta, \quad \dot{A}_{4} = \frac{1}{b_{1}} \left[\delta \left(\omega_{3}^{2} + \frac{a_{0} b_{0}}{\omega_{2}^{2}} \right) - \left(\frac{b_{0} P_{2}}{\omega_{2}^{2}} + P_{3} \right) \right],$$

$$A_{5} = \frac{1}{\omega_{5}^{2}} \left[d_{1} \delta - d_{2} A_{2} + P_{5} \right], \quad A_{6} = \frac{1}{\omega_{6}^{2}} \left[n_{2} A_{2} - n_{1} A_{1} + P_{6} \right],$$

$$\delta = \frac{\omega_{4}^{2} \left(P_{3} + \frac{b_{0} P_{2}}{\omega_{2}^{2}} \right) + b_{1} \left(\frac{\tilde{n}_{0} P_{2}}{\omega_{2}^{2}} - P_{4} \right)}{\omega_{4}^{2} \left(\omega_{3}^{2} + \frac{a_{0} b_{0}}{\omega_{2}^{2}} \right) + b_{1} \left(\frac{a_{0} \tilde{n}_{1}}{\omega_{2}^{2}} - \tilde{n}_{0} \right)}$$
(5)

При этом неизвестные функции $\widetilde{\pmb{\varphi}}_i$ и $\hat{\pmb{O}}_j^*$ будут определяться из системы уравнений:

$$\ddot{\varphi}_{2} + \omega_{2}^{2} \varphi_{2} - a_{0} \varphi_{3} = 0 ,$$

$$\ddot{\varphi}_{3} + \omega_{3}^{2} \varphi_{3} + b_{0} \varphi_{2} - b_{1} \varphi_{4} + b_{2} \ddot{O}_{1}^{*} = f_{3}^{*} ,$$

$$\ddot{\varphi}_{4} + \omega_{4}^{2} \varphi_{4} - \tilde{n}_{0} \varphi_{3} + \tilde{n}_{1} \varphi_{2} - \tilde{n}_{2} \ddot{O}_{3}^{*} = f_{4}^{*} ,$$

$$\ddot{O}_{1}^{*} + \omega_{5}^{2} \hat{O}_{1}^{*} + d_{0} \ddot{\varphi}_{3} - d_{1} \varphi_{3} + d_{2} \varphi_{2} = f_{5}^{*} ,$$

$$\ddot{O}_{3}^{*} + \omega_{6}^{2} \hat{O}_{3}^{*} - n_{0} \ddot{\varphi}_{4} + n_{1} \varphi_{4} - n_{2} \varphi_{2} = f_{6}^{*} .$$

$$(6)$$

В системе (6) правые части соответственно определяются согласно подстановок (4), причем значения функции $\varphi_i(t)$ задается выражением

$$\varphi_{\scriptscriptstyle 1}(t) = \frac{\mathcal{E} t^2}{2}$$

где:

 ${\cal E}$ – «среднее» угловое ускорение ротора двигателя, определяемое из тахограммы.

Это значение практически не отличается от истинного значения $\phi_1(t)$, на каждом из участков цикла подъема.

Одночастное уравнение, соответствующее системе (6), записывается в виде

$$m_1(\ddot{X} + \omega^2 X) = F_0 \ddot{X} + F_1 X \ddot{X} + F_2 X^2 \ddot{X} - F_3 \dot{X} - F_4 \dot{X}^2 - F_5 X \dot{X} - F_6 X \dot{X}^2, \tag{7}$$

$$\begin{split} m_{1} &= \alpha_{2}^{2} + \alpha_{3}^{2} + \alpha_{4}^{2} + \alpha_{6}^{2} + \alpha_{3}\alpha_{5}(b_{2} + d_{0}) - \alpha_{4}\alpha_{6}(c_{2} + n_{0}), \\ F_{0} &= qR^{2} \Biggl\{ \Biggl(\frac{\alpha_{3}R}{g\Delta_{1}} - \frac{\alpha_{5}}{2\Delta_{3}} \Biggr) \alpha_{3} + \Biggl(\frac{\alpha_{4}R}{g\Delta_{2}} - \frac{\alpha_{6}}{2\Delta_{4}} \Biggr) \alpha_{4} \Biggr\} \varphi_{1} - qR^{2} \Biggl(\frac{\alpha_{3}R}{2g\Delta_{1}} + \frac{\alpha_{5}}{3\Delta_{3}} \Biggr) \alpha_{5}\beta_{1}^{2} - \\ &- \Biggl(\frac{\alpha_{4}R}{2g\Delta_{2}} - \frac{\alpha_{6}}{3\Delta_{4}} \Biggr) \alpha_{6}\beta_{2}^{2} - R \Biggl\{ \frac{\alpha_{3}R}{g\Delta_{1}} (Q + ql_{01}) + \frac{\alpha_{5}}{\Delta_{3}} \Biggl(Q_{1} + \frac{ql_{01}}{3} \Biggr) \Biggr\} \alpha_{5}\beta_{1} + \\ &+ R \Biggl\{ \frac{\alpha_{4}R}{g\Delta_{2}} (Q_{2} + ql_{02}) - \frac{\alpha_{6}}{\Delta_{4}} \Biggl(Q_{2} + \frac{ql_{02}}{3} \Biggr) \Biggr\} \alpha_{6}\beta_{2} \,, \end{split}$$

$$\begin{split} \beta_{\mathrm{I}} &= \varphi_{\mathrm{I}} + A_{3}, \ \beta_{2} = \varphi_{\mathrm{I}} + A_{4}, \\ F_{3} &= \left\{ \frac{\alpha_{3}\alpha_{5}}{g\Delta_{\mathrm{I}}} \left(Q_{\mathrm{I}} + \frac{ql_{01}}{2} \right) + \frac{\alpha_{5}^{2}}{\Delta_{3}} \left(Q_{\mathrm{I}} + \frac{ql_{01}}{2} \right) + \frac{\alpha_{4}\alpha_{6}}{g\Delta_{2}} \left(Q_{2} + ql_{02} \right) - \frac{\alpha_{6}^{2}}{\Delta_{4}} \left(Q_{2} + \frac{ql_{02}}{2} \right) + \\ &+ qR \left(\frac{\alpha_{3}\alpha_{5}R}{g\Delta_{\mathrm{I}}} + \frac{\alpha_{5}^{2}}{2\Delta_{3}} - \frac{\alpha_{4}\alpha_{6}R}{g\Delta_{2}} + \frac{\alpha_{6}^{2}}{2\Delta_{4}} \right) \varphi_{\mathrm{I}} + qR \left(\frac{\alpha_{4}\alpha_{6}R}{g\Delta_{2}} - \frac{\alpha_{6}^{2}}{2\Delta_{4}} \right) A_{4} \right\} \dot{\varphi}_{\mathrm{I}}R + \\ &+ \left(\frac{\alpha_{5}^{2}}{\Delta_{3}} + \frac{\alpha_{6}^{2}}{\Delta_{4}} \right) g\alpha, \\ F_{6} - 3F_{2} &= \frac{qR^{2}}{2} \left\{ \left(\frac{\alpha_{4}R}{g\Delta_{2}} - \frac{\alpha_{6}}{\Delta_{4}} \right) \alpha_{4}^{2}\alpha_{6} - \left(\frac{\alpha_{3}R}{g\Delta_{1}} + \frac{\alpha_{5}}{\Delta_{3}} \right) \alpha_{3}^{2}\alpha_{5} \right\}. \end{split}$$

(Остальные функции F_i не вписаны, т.к. для построения решения в первом приближении они не нужны).

В этих обозначениях α_i представляют собой нетривиальные решения системы уравнений, соответствующие частоте одночастотных колебаний:

$$(\omega_{2}^{2} - \omega^{2})\alpha_{2} - \dot{a}_{0}\alpha_{3} = 0,$$

$$b_{0}\alpha_{2} + (\omega_{3}^{2} - \omega^{2})\alpha_{3} - b_{1}\alpha_{4} + b_{2}\omega^{2}\alpha_{5} = 0,$$

$$c_{1}d_{2} - c_{0}\alpha_{3} + (\omega_{4}^{2} - \omega^{2})\alpha_{4} - c_{2}\omega^{2}\alpha_{6} = 0,$$

$$d_{2}\alpha_{2} - (d_{1} - d_{0}\omega^{2})\alpha_{3} + (\omega_{5}^{2} - \omega^{2})\alpha_{5} = 0,$$

$$-n_{2}\alpha_{2} - (n_{1} + n_{0}\omega^{2})\alpha_{3} + (\omega_{6}^{2} - \omega^{2})\alpha_{6} = 0$$
(8)

где:

 ω^2 – соответствующий корень характеристического уравнения.

$$\begin{vmatrix} \left(\omega_{2}^{2} - \omega^{2}\right) & -\dot{a}_{0} & 0 & 0 & 0\\ b_{0} & \left(\omega_{3}^{2} - \omega^{2}\right) & -b_{1} & b_{2}\omega^{2} & 0\\ c_{1} & -c_{0} & \left(\omega_{4}^{2} - \omega^{2}\right) & 0 & -c_{2}\omega^{2}\\ d_{2} & \left(d_{1} + d_{0}\omega^{2}\right) & 0 & \left(\omega_{5}^{2} - \omega^{2}\right) & 0\\ -n_{2} & 0 & \left(n_{1} + n_{0}\omega^{2}\right) & 0 & \left(\omega_{6}^{2} - \omega^{2}\right) \end{vmatrix} = 0$$
 (9)

Решение системы (8) представляется в виде:

$$\alpha_2 = 1$$
, $\alpha_3 = \frac{\omega_2^2 - \omega^2}{\dot{\alpha}_0}$,
 $\alpha_4 = \frac{b_2 \omega^2}{b_0 (\omega_5^2 - \omega^2)} \sum_0 + \sum_1$, $\alpha_5 = \frac{\sum_0}{\omega_5^2 - \omega^2}$,

$$\alpha_{6} = \frac{n_{2}}{\omega_{6}^{2} - \omega^{2}} - \frac{\left(n_{0}\omega^{2} - n_{1}\right)}{\omega_{6}^{2} - \omega^{2}} \left[\frac{b_{2}\omega^{2} \sum_{0}}{b_{0}\left(\omega_{5}^{2} - \omega^{2}\right)} + \sum_{1} \right],$$

$$\sum_{0} = \frac{\left(d_{0}\omega^{2} + d_{1}\right)\left(\omega_{2}^{2} - \omega^{2}\right)}{d_{0}} - d_{2}, \quad \sum_{1} = \frac{1}{b_{0}} \left[b_{1} - \frac{\left(\omega_{2}^{2} - \omega^{2}\right)\left(\omega_{3}^{2} - \omega^{2}\right)}{a_{0}} \right].$$

Решение уравнения (7) в первом приближении запишем в виде

$$X = a\cos\psi, \tag{10}$$

тогда для определения неизвестной амплитуды a и фазы ψ получаем следующие выражения

$$\dot{a} = \dot{a}_0 \exp\left(-\frac{1}{m_1} \int F_3 dt\right), \tag{11}$$

$$\psi = \psi_0 + \omega t + \frac{\omega}{2m_1} \int F_0 dt + \frac{\omega}{8m_1} (F_6 - 3F_2) \int a^2 dt.$$

Запишем окончательно решения системы (2)

$$\widetilde{\varphi}_{2} = a_{0} \exp\left(-\frac{1}{m_{1}} \int F_{3} dt\right) \times
\times \cos\left[\psi_{0} + \omega t + \frac{\omega}{2m_{1}} \int F_{0} dt + \frac{\omega}{8m_{1}} (F_{6} - 3F_{2}) \int a^{2} dt\right] + A_{2},
\widetilde{\varphi}_{3} = a_{0} \alpha_{3} \exp\left(-\frac{1}{m_{1}} \int F_{3} dt\right) \cos[idem] + A_{3},
\widetilde{\varphi}_{4} = a_{0} \alpha_{4} \exp\left(-\frac{1}{m_{1}} \int F_{3} dt\right) \cos[idem] + A_{4},
\widehat{O}_{1} = a_{0} \alpha_{5} \exp\left(-\frac{1}{m_{1}} \int F_{3} dt\right) \cos[idem] + A_{5},
\widehat{O}_{3} = a_{0} \alpha_{6} \exp\left(-\frac{1}{m_{1}} \int F_{3} dt\right) \cos[idem] + A_{6}.$$
(12)

где

 a_0 и ψ_0 – постоянные интегрирования, определяемые начальными условиями.

Умножая относительные углы закручивания на крутильные жесткости соответствующих валов машины, получим искомые моменты сил упругости, а произведение \hat{O}_1 и \hat{O}_2 на продольную жесткость канатов позволит определить усилия в канатах переменной длины.

ВЫВОДЫ

- 1. В результате решения системы дифференциальных уравнений динамики двухбарабанной подъемной установки получены аналитические выражения для определения моментов сил упругости в валах барабанов и усилий в канатах переменной длины.
- 2. Полученные результаты могут быть использованы для обоснования рациональных конструктивно-технологических параметров подъемных установок с целью обеспечения безопасности и надежности их работы при любых режимах функционирования.

ЛИТЕРАТУРА

Костюченко В.А. и др. 2004: Дифференциальные уравнения динамики подъемных установок для гидропонных подземных комплексов и высотных башен. Сб. науч. трудов КМТИ: Механизация производственных процессов рыбного хозяйства, промышленных и аграрных предприятий. 5, 320–336.

Ландау Л.Д., Лифшиц Е.М. 1965: Механика. Наука 204 с.

Фещенко С.Ф. 1966: Асимптотические методы в теории линейных дифференциальных уравнений. Наукова думка 236 с.

THEORETICAL RESEARCH ON DEFINITION OF THE ELASTICITY FORCES MOMENTS IN SHAFTS OF THE ELEVATING MACHINE AND GAINS IN THE ROPES OF VARIABLE LENGTH

Summary. The solution of the second crucial problem of dynamic of variable length steel wire rope by one of possible methods is submitted

Key words: elevating machine, steel wire rope, calculated model, differential equations

Reviewer: Dmytro Voytiuk, Prof. Sc. D. Eng.