LOCALITIES OF *Nasturtium officinale* R. BR. ON THE GIEŁCZEW RISE (LUBELSKA UPLAND)¹

Danuta Urban*, Justyna Dresler**, Anna Iwona Mikosz*

*Institute of Soil Sciences and Environmental Management, University of Life Sciences in Lublin
Leszczyńskiego str. 7, 20-069 Lublin, danuta.urban@up.lublin.pl
**Department of Physical Geography and Paleogeography, Maria Curie-Skłodowska University
Kraśnicka Av. 2cd, 20-718 Lublin

Summary. *Nasturtium officinale* R. Br. is one of the rare species in the Polish flora. The study was performed in *Nasturtium officinale* localities in three river valleys (the Giełczew, Sierotka and Kosarzewka rivers) situated on the Giełczew Rise. The species occurs in clean, shallow, slow-flowing or standing waters, in drainage ditches, springheads and, less frequently, in ponds. The major threat for its localities is posed by succession processes, water pollution, and too intensive cleaning of drainage ditches.

Key words: *Nasturtium officinale*, localities, Giełczew Rise (Lubelska Upland)

INTRODUCTION

Nasturtium officinale R. Br. (a species from the family Brassicaceae) is a perennial with an internally empty, erect or partially decumbent, branching stem. The leaves are pinnately compound, ovate and fleshy with the terminal leaflet being larger than the others. The flowers are white, usually with purple venation, and the pods are elongated and sometimes slightly curved. Seeds are arranged in two rows and exhibit reticulate sculpture with ca. 20–25 areolae.

Nasturtium officinale is a cosmopolitan species. It is one of the rare species in the Polish flora and has been under strict species protection since 2004. Its localities have been reported from northern and western Poland [Rutkowski 1988, Buliński 2000, Zając A. and Zając M. 2001]. Localities of *Nasturtium officinale* from the Vistula river valley [Kucharczyk 2001], Lubelska Upland

¹ Study performed within the scope of research project NN305 213937.
[Zając and Zając (eds) 2001] and Polesie Lubelskie [Banach 2008] have been reported as well. According to Fijałkowski [1995], the species is sparse in the Lublin Province and occurs mainly in drainage ditches. Tacik [1985] reports that there are no accurate data about the species distribution, because frequently it is wrongly distinguished from related species or misidentified as Cardamine amara L. Besides Nasturtium officinale, Nasturtium microphyllum (particularly rare) has been reported from only few localities in Poland [Tacik 1985, Smoczyk 2001, Kruk and Szymańska 2009] and a hybrid of both species Nasturtium × sterile (Airy-Shaw) Oefelein.

Like Nasturtium microphyllum, Nasturtium officinale occurs in clean, shallow, slow-flowing or standing waters, on the banks of streams and old riverbeds, in drainage ditches, and springheads. It is an indicator of water purity [Rottmaler et al. 1988, Rumińska and Ozarowski 1988].

It is a characteristic species for the association Nasturtietum officinalis (Seib. 1962) Oberd. et al. 1967 from the alliance Sparganio-Glycerietum fluitantis Br.-Bl. et Siss. and the class Phragmitetea R.Tx. et PTs. 1942. According to Matuszkiewicz [2005], the association, reported from the region of Wielkopolska, is poorly known.

The Nasturtium officinale R. Br. species has been known as a medicinal and edible plant since antiquity. The herb exhibits antiscorbutic, mild diuretic, antidiabetic and expectorant activity; it also lowers blood pressure [Rumińska and Ozarowski 1990, Broda and Mowszowicz 1996, Senderski 2004]. In recent years, research has been conducted on the use of plants from the family Brassicaceae, including Nasturtium officinale, in chemoprevention of tobacco smoke-induced lung cancer [Balcerek 2007]. The leaves of Nasturtium officinale are a valuable spice [Łuczaj 2008] (leaves and young plants are edible), and the herbs are used in the cosmetic industry [Senderski 2004].

The aim of the work was characterization of Nasturtium officinale localities in three river valleys of the Giełczew Rise (Lublin Upland). The material collected will allow tracking further changes in these localities.

STUDY AREA, MATERIALS AND METHODS

The study involved Nasturtium officinale localities in the valleys of the Kosarzewka (Bystrzycą tributary), Giełczew (Wieprz tributary) and Sierotka (Giełczew tributary) rivers. According to the physical-geographical division developed by Kondracki [2002], the valleys are situated on the Giełczew Rise, which is a mezoregion of the Lublin Upland. In terms of administration, the study objects are located in the Lublin Province, in the municipalities of Rybczewice (the Giełczew river valley – the village of Wygnanowice), Piaski (the Sierotka river valley – the village of Kęblów) and Bychawa (the Kosarzewka river valley – the village of Zdrapy).
Field observations were conducted in 2008–2010. In 2009, 12 phytosociological relevés were made with the method of Braun-Blanquet [1951] in the Nasturtium officinale localities. The phytosociological classification and nomenclature of plant communities followed that developed by Matuszkiewicz [2005]; the nomenclature for vascular plants follows Mirek et al. [2002]. Water samples were taken at the sites of occurrence of the largest patches of Nasturtium officinale in autumn 2009 and spring 2010. Reaction (pH) was measured by potentiometry, specific electrolytic conductance (µS/cm at 20°C) was determined with the conductometric method (according to the methodology developed by Elbanowska et al. [1999]), the contents of Na, K, Ca, Mg and Fe – by flame atomic absorption spectrometry (FAAS), and the total N and P content was determined in the MPM 2010 photometer.

RESULTS AND DISCUSSION

In the Kębłów locality (the Sierotka river valley), Nasturtium officinale occurred along drainage ditches with slow-flowing water and in ditches draining springhead effusions. Nasturtium officinale specimens reached a height of about 0.3–0.4 m; they were richly branched and most of them flowered. Small clusters of the species were also found in the Sierotka river. The substrate was composed of mineral formations covered with a layer of silt. The size of individual patches usually reached few square meters. Nasturtium officinale formed dense fields and its cover reached 100%. The accompanying species included Lemna minor, Myosotis palustris, Veronica anagallis-aquatica and Phragmites australis (Tab. 1).

In the second locality in Wygnanowice (the Giełczew river valley), Nasturtium officinale occurred along drainage ditches with standing water and organic substrate, and in a large springhead and springhead effusions. The area of individual patches ranged from a few to several square meters. Nasturtium officinale specimens growing in drainage ditches were robust and reached a height of about 0.6 m; those in springhead niches were shorter and reached a height of about 0.3–0.4 cm. Most of the specimens, particularly those in the drainage ditches and spring water effusion, bloomed and bore fruit. Like in the above-mentioned locality, Nasturtium officinale formed dense fields and its cover reached 100%. The accompanying species included Lemna minor, Veronica anagallis-aquatica, Berula erecta, Myosotis palustris, and Phragmites australis (Tab. 1).

In the locality in Zdrapy (the Kosarzewka river valley), Nasturtium officinale occurred in a few drainage ditches with standing or slow-flowing water, in a large springhead and in a pond dug in the springhead niche. Organic formations were found at the bottom of most of the drainage ditches and in the pond. Mineral formations, covered with a thin layer of silt, were found in the largest drainage ditch running parallel to the Kosarzewka river bed. The size of individual patches ranged from a few to several square meters. Nasturtium officinale specimens (especially those in the drainage ditches) were robust and reached a height
of about 0.8 m; they were richly branched, bloomed profusely and bore fruit. Like in the other localities, *Nasturtium officinale* formed dense fields of 100% cover. The accompanying species included *Lemma minor*, *Elodea canadensis*, *Berula erecta*, *Myosotis palustris*, *Phragmites australis*, *Phalaris arundinacea*, *Mentha aquatica*, and, very seldom, *Lythrum salicaria* and *Cirsium oleraceum*.

Table 1. Floristic composition of the association *Nasturtietum officinalis* (Seib. 1962) Oberd. et al. 1967

<table>
<thead>
<tr>
<th>Locality</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer c cover in %</td>
<td>K*</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td>W**</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>F***</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>Number of species in the relevés</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Nasturtium officinale</td>
<td>5</td>
</tr>
<tr>
<td>Lemma minor</td>
<td>.</td>
<td>+</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Spirodela polyrhiza</td>
<td>1</td>
<td>.</td>
</tr>
<tr>
<td>Elodea canadensis</td>
<td>.</td>
</tr>
<tr>
<td>Phragmites communis</td>
<td>1</td>
<td>.</td>
</tr>
<tr>
<td>Phalaris arundinacea</td>
<td>.</td>
</tr>
<tr>
<td>Veronica anagallis-aquatica</td>
<td>.</td>
<td>.</td>
<td>+</td>
<td>.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Berula erecta</td>
<td>.</td>
</tr>
<tr>
<td>Lythrum salicaria</td>
<td>.</td>
</tr>
<tr>
<td>Cirsium oleraceum</td>
<td>.</td>
</tr>
<tr>
<td>Myosotis palustris</td>
<td>.</td>
<td>.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Mentha aquatica</td>
<td>.</td>
<td>+</td>
<td>.</td>
</tr>
</tbody>
</table>

*K – Kębłów, **W – Wygnanowice, ***Z – Zdrapy*

The waters of the study objects were characterized by alkaline reaction (Tab. 2). In general, samples taken in the spring exhibited a slightly higher pH. Conductivity ranged from 462 to 638 µS/cm in autumn and from 462 to 621 µS/cm in spring. The highest conductivity was reported from water samples collected in the Kębłów locality (The Sierotka river valley), and the lowest – in the Zdrapy object (the Kosarzewka river valley). Sodium and potassium content in the analyzed waters fluctuated within a fairly wide range. In autumn, the range for Na was from 4.71 to 16.70 mg·dm$^{-3}$, while in spring – from 4.86 to 13.50 mg·dm$^{-3}$. K content was in the range of 1.48–10.81 mg·dm$^{-3}$ in autumn and 0.74–7.52 mg·dm$^{-3}$ in spring. Calcium had higher values in spring (from 88.10 to 105.00 mg·dm$^{-3}$) than in autumn (from 75.93 to 81.57 mg·dm$^{-3}$). In contrast to calcium, the content of magnesium was higher in autumn. Iron was present in quantities not exceeding 0.19 mg·dm$^{-3}$. The content of total phosphorus ranged from 0.59 to 1.01 mg·dm$^{-3}$ in autumn and from 0.20 to 1.51 mg·dm$^{-3}$ in spring. The amounts of total nitrogen ranged between 0.18 and 4.99 mg·dm$^{-3}$ in autumn 1.03 to 7.12 mg·dm$^{-3}$ in spring.

The present study indicates that *Nasturtium officinale* occurred in typical habitats associated with effusions and springhead waters (outflows of water from springhead niches, canals and ditches draining spring effusions, a pond in the springhead niche). Similar habitats are indicated by other authors [Fijałkowski 1995, Buliński 2000]. According to Czylok et al. [2008] and Woźniak and Kompała [2000], *Nasturtium officinale* may occur in sand mining pits.
Table 2. Characteristics of surface waters in the study localities

<table>
<thead>
<tr>
<th>Village</th>
<th>Month of sampling</th>
<th>pH</th>
<th>Conductivity µS/cm</th>
<th>Na</th>
<th>K</th>
<th>Ca</th>
<th>Mg</th>
<th>Fe</th>
<th>P</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kębłów</td>
<td>September</td>
<td>7.5</td>
<td>638</td>
<td>16.70</td>
<td>10.81</td>
<td>81.57</td>
<td>12.0</td>
<td>0.05</td>
<td>0.68</td>
<td>0.18</td>
</tr>
<tr>
<td>Sierotka</td>
<td>May</td>
<td>7.4</td>
<td>621</td>
<td>13.50</td>
<td>7.52</td>
<td>105.00</td>
<td>11.9</td>
<td>0.01</td>
<td>0.39</td>
<td>7.12</td>
</tr>
<tr>
<td>Wysganowice</td>
<td>September</td>
<td>6.6</td>
<td>586</td>
<td>15.69</td>
<td>4.42</td>
<td>70.44</td>
<td>11.40</td>
<td>0.19</td>
<td>1.01</td>
<td>4.99</td>
</tr>
<tr>
<td>Giełczew</td>
<td>May</td>
<td>7.3</td>
<td>561</td>
<td>14.30</td>
<td>4.40</td>
<td>92.40</td>
<td>10.70</td>
<td>0.03</td>
<td>0.39</td>
<td>6.86</td>
</tr>
<tr>
<td>Zdrapy</td>
<td>September</td>
<td>7.1</td>
<td>470</td>
<td>4.71</td>
<td>1.48</td>
<td>75.93</td>
<td>8.51</td>
<td>0.01</td>
<td>0.59</td>
<td>0.46</td>
</tr>
<tr>
<td>Koszarzewka</td>
<td>May</td>
<td>7.5</td>
<td>462</td>
<td>4.86</td>
<td>1.02</td>
<td>88.80</td>
<td>7.71</td>
<td>0.02</td>
<td>0.20</td>
<td>1.89</td>
</tr>
<tr>
<td>Zdrapy</td>
<td>September</td>
<td>7.1</td>
<td>462</td>
<td>9.02</td>
<td>2.46</td>
<td>86.00</td>
<td>8.68</td>
<td>0.12</td>
<td>0.59</td>
<td>1.60</td>
</tr>
<tr>
<td>Koszarzewka</td>
<td>May</td>
<td>7.3</td>
<td>473</td>
<td>5.63</td>
<td>0.74</td>
<td>88.10</td>
<td>7.15</td>
<td>0.03</td>
<td>1.51</td>
<td>1.03</td>
</tr>
</tbody>
</table>

Nasturtium officinale was the dominant species in all the study patches of the association *Nasturtietum officinale*. *Lemna minor*, *Myosotis palustris*, as well as *Berula erecta* and *Veronica anagallis-aquatica* were the few accompanying species. Similar dependencies were shown in the research conducted by other authors in river valleys in Italy [Biondi et al. 2003, Tomasi et al. 2003, Angiolini et al. 2005], Greece [Georgiadis et al. 1997], and in Poland [Buliński 2000]. The study of Szoszkiewicz et al. [2010] indicates that the association *Nasturtietum officinale* is connected with mesotrophic waters.

The major threat for the above-described *Nasturtium officinale* localities are succession processes, water pollution, and too intensive cleaning of drainage ditches. In the Kębłów and Zdrapy localities, *Nasturtium officinale* patches were partially destroyed during the cleaning of drainage ditches and canals.

CONCLUSION

1. The study localities of *Nasturtietum officinale* are the richest in the Giełczew Rise and Lublin Upland. The most robust *Nasturtium officinale* specimens (height of shoots up to 0.8 m) were found in the Zdrapy locality in the Koszarzewka river valley.

2. In all the localities, *Nasturtietum officinale* patches were associated with clean springhead waters.

REFERENCES

STANOWISKA Nasturtium officinale R. BR. NA WYNIOSŁOŚCI GIEŁCZEWSKIEJ (WYŻYNA ŁUBELSKA)

Streszczenie. Nasturtium officinale R. Br. jest jednym z rzadszych gatunków flory Polski. Badaniami objęto stanowiska Nasturtium officinale w trzech dolinach rzecznych (Giełczew, Sierotka i Kosarzewka), leżących na Wyniosłości Giełczewskiej. Gatunek ten występuje tu w czystych, płytkich, wolno płynących lub stojących wodach, w rowach melioracyjnych oraz źródliskach i rzadziej w sadzawkach. Największym zagrożeniem dla jego stanowisk są procesy sukcesji, zanieczyszczenie wody oraz zbyt intensywne oczyszczanie rowów melioracyjnych.

Słowa kluczowe: Nasturtium officinale, stanowiska, Wyniosłość Giełczewska (Wyżyna Lubelska)