THE MONITORING OF VEGETATION AND HABITATS OF WATER-PeatLAND ECOSYSTEMS OF „KROWIE BAGNO“ (LĘCZNA-WŁODAWA LAKE/AND)

Bogdan Lorens, Piotr Sugier

Zakład Ekologii
Uniwersytet Marii Curie-Sklodowskiej, ul. Akademicka 19, 20-033 Lublin
E-mail: boрен@biotop.unicz.lublin.pl, plougier@biotop.unicz.lublin.pl

Summary „Krowie Bagno”, a broad complex of peatland vegetation (over 3500 ha area), was one of the most valuable areas of the Lublin region from the natural point of view. Its vegetation was destroyed after drainages carried out at the turn of the 1970’s and 1980’s. The last refuge of 23 protected, endangered and rare plant species of wetlands is located in the vicinity of Lubowierz and Lubowierzko Lakes. The presence of 8 plant communities of aquatic vegetation, 7 of rushes, 9 of peatland and meadow and 3 of forest ones were noted there. In the perspective of restoration of small areas in „Krowie Bagno”, the monitoring of chosen peatland and meadow ecosystems was started.

Key words: monitoring, peatland and meadow ecosystems, „Krowie Bagno”

INTRODUCTION

The most serious threat to wet regions is the change of their hydrological regime due to drainage. Until the middle of the 18th century water management in Poland was mainly regulated by natural factors. First drainages were made in the 17th as well as in the 18th centuries and were of local character; however, later they began to affect the function of wetland ecosystems. The intensification of drainage took place in the latter part at the turn of the 20th century. Strongly wet areas were changed into meadows and pastures. The habitat conditions of boggy regions were radically altered by drainage in the 20th century (Dugan 1993). It caused the beginning and acceleration of some dynamic processes in wetland ecosystems. Some of them are very unfavourable taking into account the conservation of biodiversity [Wheeler 1995, Poschold et al. 1998]. Active protection of this type of biocenoses requires a detailed recognition of their habitat conditions, vegetation as well as flora and fauna at preliminary stages. The proper assessment of the results of protection is also possible only on the basis of the data obtained from the monitoring of chosen elements of natural habitats which should accompany such undertakings. Hydrological conditions, dynamics of biocenoses as well as a change of the quantity of local populations of the plant and animal species are the most important elements of continuous control in the wetland areas.
The complex of wetland vegetation, located in the vicinity of Lubowierz and Lubowierze Lake, is one of the few enclaves of „Krowie Bagno”, where the last refuge of protected, endangered and rare plant species still exist. The presence of 8 plant communities of aquatic vegetation, 7 of rushes, 9 of peatbog and meadow and 3 of forest ones were noted there, during the field research [Lorens and Sugier, unpublished data]. In consequence, the monitoring of chosen peatland and meadow ecosystems was started.

STUDY AREA

„Krowie Bagno” – a broad complex of meadow and peatland vegetation (over 3500 ha area) – was one of the most valuable areas of the Lublin region from the natural point of view [Bernar 1955]. It is situated in the eastern part of Lublin province, on the area of the communes: Lutsk, Hażlów and Stary Brus, being part of Polesie Lubelskie. „Krowie Bagno” lies in the catchment area of the Wędawka river, a left-hand tributary of the Bug. The presence of wide patches of peatland communities with a domination of Carex elata, Cladium mariscus and Schoenoplectus californicus were a characteristic feature of the vegetation of this area. Floristically extremely valuable phytocenoses of Molinum caeruleum meadows and Betula-Salix montana shrubs also had a high share in the vegetation. The presence of about 500 plant species gathered in 28 associations was also noted there [Jargiello 1976, Fijalowski et al. 2000].

Drainage activities on the „Krowie Bagno” were carried out from the beginning of the 19th century; however, the turn of the 1970’s and the 1980’s was the time of their highest intensity. The total area 2800 ha of unused peatlands was drained then [Dumiński 1986, Los 1987, Los and Pasiasik 2002]. The consequences of a drastic intrusion into hydrological conditions as well as farming were huge transformations of the natural vegetation of „Krowie Bagno”. The drainage together with agricultural usage caused intensification of muck accumulation and a fall in groundwater table about 50 cm on average in comparison with the year 1966 [Los 1998]. The crisis of agricultural management contributed to further degradation of vegetation on a considerable area of meadows, as a result of the cessation of mowing and pasturing.

The prospects of restoration of small fragments of „Krowie Bagno” have appeared recently. It is connected with the necessity of beginning the permanent control of chosen elements of environment.

MATERIAL AND METHODS

Field studies were carried out in August 2003. Six research transects, 5 meters wide and from 35 to 290 m long, were placed. The plots sized 5 × 5 m were pointed in each community located in the transects. Plant communities were examined using the commonly applied method of Braun-Blanquet. Detailed quantitative inventory of all plant species within the plots was carried out. The syntaxonomic system and syntaxonomic affiliations of species were adopted after Matysiakiewicz [2001]. The data will be used to assess the dynamics of the processes taking place in the structure and floristic composition of monitored phytocenoses. In each of 19 permanent study plots the borings were made, the arrangement of soil horizons was characterized and the groundwater table determined. Additionally, the samples of soil from the depth of 10-20 cm were taken and their reaction was measured.
RESULTS

The arrangement of phytocenoses in individual research transect was as following:
- transect 1-290 m long, included plant communities: Molinitetum caeruleae variant with Carex davalliana, Caricetum buxbaumii, Molinitetum caeruleae after the last year fire, Molinitetum caeruleae not touched by fire, forest community with Betula pubescens;
- transect 2-71 m long, went through the communities: Thelypteridi-Phragniteta, Salicetum pentandro-cineraeae, Sphagno-Caricetum rostratae, Molinitetum caeruleae with admixture of Betula pubescens;
- transect 3-112 m long, within it there were the following plant communities: Caricetum acutiformis, Sphagno-Caricetum rostratae, Betulo-Salicetum repens;
- transect 4-50 m long, included communities: Salicetum pentandro-cineraeae, Sphagno-Caricetum rostratae;
- transect 5-35 m long, went through the communities: Salicetum pentandro-cineraeae, Caricetum lasiocarpi, Caricetum appropinquatae, Molinitetum caeruleae;
- transect 6-104 m long, situated within Betulo-Salicetum repens and Molinitetum caeruleae.

Short phytosociological and ecological characteristics of plant communities occurring within the permanent monitoring plots in the transects are presented below.

Thelypteridi-Phragniteta

Phytocenose of this association occurred as a floating layer of plants on the water surface with predominant Phragmites australis and Thelypteris palustris. In the places of broken cover on the water surface the following aquatic species appeared with low quantity: Potamogeton natans, Myriophyllum verticillatum, Hydrocharis morsus-ranae, Nymphoides candida, Nuphar lutea and Stratiotes aloides. From among the rush species, apart from reed, Typha latifolia, Schoenoplectus lacustris, Carex elata, C. pseudocyperus, Lysimachia thyrsiflora, Stellaria alpina and Gulizia palustris were present. Transitional bog species were represented by Comarum palustre, Carex lasiocarpa, Viola palustris and Aegopodium podagraria. Most frequently occurring species in the well developed bryophyte layer were Calliergonella cuspidata and Sphagnum girgensohnii.

Caricetum acutiformis

The patch of this association arouse on the floating skin of rhizomes and roots. It was created mainly by Caricetum acutiformis with a fairly essential share of Thelypteris palustris. Moreover, the class Phragmitetalia was represented by 6 species, among them only Typha latifolia's cover exceeded 5%. A minor admixture of meadow species (Lymeochaeta vulgaris, Lysimachia salicaria and Cirsium palustre), from the Molinion alliance, was present.

Caricetum appropinquatae

The association was represented by floristically rich phytocenoses with a specific hummock-hollow structure, Carex appropinquata - a characteristic and at the same time dominating species of that association – built the hummocks up to 40 cm high. Such a structure caused differentiation of the soil moisture and affected the floristic composition. Beside rush and peatland vegetation the species of meadow and shrubs communities occurred. In wet hollows as well as on dry hummocks there were favourable conditions...
for bryophytes and their cover reached there up to 90%. Most frequently noted species were *Sphagnum palustre* and *S. cuspidatum*.

The above described association of *Carex tetralix* took up moist peat soil, with slight acidity (pH 5.8). Groundwater table was 30 cm below the surface.

Carex tetralix

The phytocenoses of *Carex tetralix* association had a vertical structure consisting of two layers – one very poor in bryophytes and the other rich in herbs (cover up to 100%). *Carex tetralix* prevailed in it with considerable admixture of *Carex davalliana*, *Succisa pratensis* and *Potentilla erecta*. In some fragments, especially on wetter ground, the share of species characteristic of *Scheuchzerio-Caricetum nigrar* class arose (*Carex oederi, C. flava, C. nigra, Eriophorum angustifolium, Menyanthes trifoliata*). In some places the clumps of *Molinia caerulea* appeared. Sparse bryophytes represented *Sphagnum capillifolium*.

These patches appeared on peat soil, the reaction of which was close to neutral (pH 6.3) and groundwater table was to be found on depth ca 80 cm.

Carex tetralix

As regards floristic composition, phytocenoses of that association are characterized by unquestionable domination of *Carex tetralix*, reaching the cover up to 40%. Meadow species made up an unimportant admixture of herb layer. Prevalent were the taxons of *Scheuchzerio-Caricetum nigrar* class (*Carex nigra, C. limosa, C. dioica, Comarum palustre*), but the cover of none of them exceeded 5%. The share of *Phragmites australis* grew only in some places. *Alnetea glutinosae* class was represented mainly by *Betula humilis*, rarely by *Salix cinerea* (both of them in shrub layer). Bryophytes were well developed (cover 100%) and their basic components were *Sphagnum cuspidatum* and *S. palustre*.

Carex tetralix developed on peat soil, whose reaction was pH 5.4 and groundwater table laid 20 cm beneath surface.

Sphagno-Caricetum rostratae

The phytocenoses of that community had three layers. The cover of shrubs of one reached 20%. Its basic component was *Betula pubescens, Betula humilis* and *Salix cinerea* rarely occurred. In the herb layer *Oxyccoccus palustris* and *Carex rostrata* prevailed quantitatively. Besides the second of the mentioned species, *Scheuchzerio-Caricetum nigrar* class was also represented by *Carex tetralix*, *C. nigra, C. chordintha*., *C. limosa, Eriophorum angustifolium* and *Comarum palustre*. A well developed bryophytes layer consisted of *Sphagnum cuspidatum*, *S. rubellum, S. palustre, S. magellanicum*.

Peat soils of *Sphagno-Caricetum rostratae* were characterized by high acidity (pH 4.2) and groundwater table was near the surface (20-30 cm).

Molinietum caeruleae

The patches of *Molinietum caeruleae* differentiated into some variants, because of the presence and floristic composition of shrubs. From among them a typical variant, devoid of bushes was selected. *Molinia caerulea* was the species which gave a specific physiognomy to the association because of its high abundance. Its cover varied from 70 to 90%. *Molinia caerulea* was accompanied by characteristic species from the *Molinio-Arthenatheretea* and *Scheuchzerio-Caricetum nigrar* classes. The admixture of peatland
species (Carex nigra, C. davalliana, C. cederi, Eriophorum angustifolium) and rush ones (Phragmites australis) developed on most wet peat soils. Moderately moist peat soils were occupied by patches with a higher share of the characteristic species of Molinia-Arrhenatheretea class, especially Succisa pratensis. Phytocenoses of Molinietum caeruleae occurred on deep peat soils (thickness of peat layer exceeded 200 cm). Their reaction was similar to neutral (pH from 6.1 to 6.3). Groundwater table in the summer oscillated between 60 and 200 cm.

Salicetum pentandro-cinerae

The shrub layer (cover 60-80%) consisted mainly of Salix cinerea. In some places there was a visible admixture of Frangula alnus. The herb layer was well developed. Thelypteris palustris predominated there. In some patches high quantity was shown by Phragmites australis as well as Oxyccoccus palustris. Bryophytes covered from 70 to 100% of the ground. There were first of all Sphagnum palustre, S. squarrosum, S. girgensohnii.

Willow shrubs grew on peat soils whose reaction oscillated in the examined patches from 4.7 to 6.5 pH. The ground was usually flooded from the spring to the beginning of July. Afterwards groundwater table was 5-10 below surface.

Betulo-Salicetum repens

The association was represented by phytocenoses of low shrubs having a three layer spatial structure. Salix rosmarinifolia was dominant in the highest one. In the some places Betula humilis and Frangula alnus occurred in admixture. The species representing Alnetea glutinosae, Scheuchzerio-Caricetalia nigrae, Phragmitetalia, Oxyccocco-Sphagnetalia and Molini-Arrhenatheretea classes were the most important components of the herb layer, whose cover reached 70%. Among them, Molinia caerulea, Phragmites australis, Oxyccoccus palustris and Comarum palustre had the highest quantity. The layer of bryophytes consisted of Sphagnum cuspidatum and S. palustre.

Betulo-Salicetum repens developed on moist peat soils with a reaction of 5.9 pH and groundwater table below 40 cm.

Forest community Betula pubescens

A dense layer of the trees was built of Betula pubescens with admixture of Alnus glutinosa and Populus tremula. Small birches and Frangula alnus created the shrub layer. Molinia caerulea – as remains of previous stages of succession – predominated in herb vegetation. In the places without that grass Rubus idaeus, Urtica dioica and Thelypteris palustris appeared. Mosses were absent. The ground, where above described community existed, was partially mucked peat with reaction 5.7 pH.

DISCUSSION

Large patches of Molinietum caeruleae occurred in „Krowie Bagno” are one of the most valuable and simultaneously most endangered mesotrophic plant communities. It takes up slightly acid to neutral soils with a low nutrient availability [Westhoff and Den Holde 1969, Janson and Maas 1993]. The last remaining Molinietum caeruleae stands are severely endangered by acidification and eutrophication as a result of lowering of the
groundwater table, increasing acid and nitrogen deposition from the atmosphere and
indirectly impact of excessive fertilization [Westhoff and Van Heerden 1969, Rodwell 1991,
De Graaf et al. 1994, Michalska-Hejduk 2001]. As a result of acidification and eutrophication,
the low-productive Molinia caerulea replaced by a vegetation of usually high-productive
species, such as Calamagrostis canescens and Filipendula ulmaria.
Additionally, as the result of agricultural crisis and the collapse of the state-owned
lands, there followed an essential extension of land use connected mainly with a serious
decrease of the frequency of mowing. In the undergrowth, there was a gradual decrease
of the share of grasses to the advantage of dicotyledons, particularly of Urtica dioica and
Cardaminopsis arenosa. There are also other valuable and threatened plant communities,
especially with transitional peatbog vegetation in the „Krowie Bagno”, such as
Sphagnum-Caricetum rostratae, Carexetum lasiocarpaceae and connected with calcareous
soils Carexetum davallianae.

For the reason given above, the monitoring and in the future restoration of the diversity of flora and vegetation of some parts of „Krowie Bagno” complex should become
one of the most important objectives.

CONCLUSIONS

In the perspective of restoration of small areas in „Krowie Bagno”, the monitoring of
chosen peatland and meadow ecosystems was started. Six study transects, 5 meters wide
and from 35 to 290 m long, were placed. Detailed quantitative inventory of all plant
species within the 19 permanent plots of the transects was carried out. Within the study
plots 10 plant communities occurred. Some of them are severely endangered in Poland
by acidification and eutrophication as a result of lowering of the groundwater table. The
presented results of the study can be treated as a registration of the actual state of the
vegetation and chosen environmental conditions, and will be collected in the future. The
data obtained from monitoring may be very useful for the assessment of the results of
protection and planning of the restoration management.

REFERENCES

De Graaf M.C., Verhees P.J., Cals M.J., Rodloff J.G., 1994: Effecegerichte maatregelen tegen
verzuring en eutrofisering van mijn mineralkrijke heide en schraallanden. Eindrapport moni-
toringsprogramma eerste fase. Vakgroep Oecologie, Werkgroep Millebiologie, University of
Nijmegen, Nijmegen, pp. 75.
316-318 (in Polish).
Fijalkowski D., Remer S., Sawa K., 2000: Vegetation of „Krowie Bagno” before and after its
drainage. [In:] Michalczuk Z. (ed.); Restoration of nature objects – ecological and economic
Streszczenie. Jednym z najcenniejszych pod względem przyrodniczym obszarów Lubelszczyzny jest rozległy kompleks roślinności wodnej i torfowiskowej „Krowiego Bagna”. Intensywne melioracje udawiające przeprowadzone na przełomie lat 70. i 80. ubiegłego wieku doprowadziły do degresji i zaniku wielu rzadkich i cennych zbiorowisk roślinności torfowiskowej i łajkowej wraz z ich ufortyfikowanym łonem. Jedną z niewielu kryników, w obrębie których zachowały się ostatnie na tym obszarze relikty górnych gisowych, rzadkich i chronionych (łącznie 23 taksony) jest kompleks roślinności wodno-torfowiskowej w sąsiedztwie jezior Lubowiec i Lubowierzek. Przeprowadzone tu badania wykazały występowanie 8 zbiorowisk roślinności wodnej, 7 szuwarkowej, 9 torfowiskowej i 1 łajkowej oraz 3 zarastającej i leśnej. Ze względu na perspektywy renaturyzacji fragmentów „Krowiego Bagna”, rozpoczęto monitoring wybranych ekosystemów torfowiskowych i łączowych.

Słowa kluczowe: monitoring przyrodniczy, ekosystemy torfowiskowe i łąkowe, „Krowiego Bagna"