ESTIMATION OF A SMALL FRACTION UNDER NORMALITY

Joanna Tarasińska
Department of Applied Mathematics, Agricultural University of Lublin

Summary. We are interested in the fraction p of units for which a certain normally distributed characteristic X exceeds a permissable value L. When p and the sample size n are small, the fraction in the sample can not be used as the estimator of p. The aim of the paper is to encourage the practitioners-non statisticians to use in such a situation different estimators than simple „fraction in the sample”.

Key words: normal distribution, estimator of a fraction, robustness

INTRODUCTION

In many situations we have a random variable X which is normally distributed $(X \sim N(\mu, \sigma^2))$ and we are interested in an estimation of the fraction of units for which the event $\{X > L\}$ happens. L can be, for example, the maximal permissable value of X and in such a case we want to estimate the fraction of defective units. It is a problem of an estimation of the probability $p = \Pr(X > L)$. Having the random sample X_1, X_2, \ldots, X_n we can estimate p just by the fraction of defective units in the sample, it means $\hat{p} = \frac{k}{n}$, where k is the number of X_i being greater than L.

Such an estimator ignores the fact of normality of X. Additionally, it needs large sample size when p is small. Let us consider for example $p \approx 0.05$ and $n = 10$. \hat{p} in such a case is absolutely useless. It is known that there exist better estimators.

Considering $p = \Pr(X > L) = \Phi\left(\frac{\mu - L}{\sigma}\right)$ we have for example the maximum likelihood estimator [Patel and Read 1996]:

$$\hat{p} = \Phi\left(\frac{\bar{X} - L}{S}\right),$$

(1)
where $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$, $S^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2$. $\Phi()$ is the cumulative distribution function read from normal tables.

There also exists the “best” unbiased estimator of p which has the smallest variance in the class of unbiased estimators. It can be calculated [Lieberman and Resnikoff 1995, Patel and Read 1996] by the formula

$$\hat{p} = \left\{ \begin{array}{ll} 0 & \text{if } a < 0 \\ I_a \left(\frac{n}{2} - 1, \frac{n}{2} - 1 \right) & \text{if } 0 \leq a \leq 1 \\ 1 & \text{if } a > 1 \end{array} \right., \quad (2)$$

where $a = 0.5 \left[1 + \frac{\sqrt{n} (\bar{X} - L)}{(n-1)S^*} \right]$, $S^* = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$, $I_a(p,q) = B^{-1}(p,q) \int_{0}^{a} t^{p-1}(1-t)^{q-1} dt$ is the incomplete beta function ratio and $B(p,q)$ is the complete beta function $B(p,q) = \int_{0}^{1} t^{p-1}(1-t)^{q-1} dt$.

So, contrary to \hat{p}, \hat{p} demands rather troublesome calculations.

It is easy to find a formula for (1) and (2) in the situation when $p = \Pr(X < L)$. In such a case we have $\hat{p} = \Phi \left(\frac{L - \mu}{\sigma} \right)$, $\hat{p} = \Phi \left(\frac{L - \bar{X}}{S} \right)$, \hat{p} is the same as in (2) with

$$a = 0.5 \left[1 + \frac{\sqrt{n} (\bar{X} - L)}{(n-1)S^*} \right].$$

Example (theoretical one, the idea taken from Bowker and Lieberman 1959, p.57:
The clearance between the external shaft diameter and the internal bearing diameter can be assumed to be normally distributed. The minimum permissible clearance is 0.005 inches.

For a random sample of 5 pairs of shaft and mating bearing we get the following measurements of clearance (in inches): 0.0080, 0.0079, 0.0140, 0.0081, 0.0094.

We have $\bar{X} = 0.00948$, $S \approx 0.002325$, $S^* \approx 0.002599$, $a = 0.01828$ so $\hat{p} = 0.027$ and $\hat{p} = 0.004$.

Several authors have compared \hat{p} and \hat{p} [Zacks and Eden 1966, Brown and Rutemiller 1973, Gertsbakh and Winterbottom 1991] taking into consideration their MSE (mean squared error) and bias of \hat{p}. It turns out for example that, for $p \approx 0.05$, \hat{p} is nearly unbiased.
Fig. 1. The histogram for \hat{p}, $n = 10$, $p = 0.05$

Fig. 2. The histogram for \hat{p}, $n = 10$, $p = 0.05$

Fig. 3. The histogram for \hat{p}, $n = 50$, $p = 0.05$
Fig. 4. The histogram for $\hat{p}, n = 50, p = 0.05$

Fig. 5. The distribution of $\hat{p}, n = 10, p = 0.05$

Fig. 6. The distribution of $\hat{p}, n = 50, p = 0.05$
ESTIMATION OF A SMALL FRACTION UNDER NORMALITY

Of course, MSE does not say everything about the distribution. To check whether the distributions of \(\hat{p} \) and \(\tilde{p} \) differ much or not, some simulations were done.

For \(n = 10 \) and 50, \(p = 0.05 \) five thousands random samples from standard normal distribution were generated and \(\hat{p} \) and \(\tilde{p} \) were computed (with \(L = \Phi^{-1}(1 - p) \)). Their histograms are presented in Figures 1,2,3 and 4. They can be compared with the distribution of \(\tilde{p} \) given in the Figures 5 and 6. Of course \(\Pr\left(\tilde{p} = \frac{k}{n} \right) = \binom{n}{k} p^k (1 - p)^{n-k} \).

Of course it can be seen from Fig. 5 that \(\tilde{p} \) is completely useless in the case of small sample size.

Table 1 contains the MSE and bias of \(\hat{p} \) calculated from simulations. The MSE for \(\hat{p} \) was calculated by the formula \(\text{MSE} = \frac{1}{5000} \sum_{i=1}^{5000} (\hat{p}_i - 0.05)^2 \), bias by the formula \(\frac{1}{5000} \sum_{i=1}^{5000} \hat{p}_i - 0.05 \). The MSE for \(\hat{p} \) is equal to the variance of \(\hat{p}_i \) because \(\hat{p} \) is unbiased. From Table 1 it can be seen that \(\hat{p} \) is superior to \(\tilde{p} \) when MSE is the criterion.

<table>
<thead>
<tr>
<th>(n)</th>
<th>(\hat{p}) MSE</th>
<th>(\hat{p}) bias</th>
<th>(\tilde{p}) MSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.002100</td>
<td>-0.016</td>
<td>0.002662</td>
</tr>
<tr>
<td>50</td>
<td>0.000491</td>
<td>0</td>
<td>0.000495</td>
</tr>
</tbody>
</table>

ROBUSTNESS OF \(\hat{p} \) AND \(\tilde{p} \) TO DEVIATIONS FROM NORMALITY

Both estimates \(\hat{p} \) and \(\tilde{p} \) can be used when \(X \) is normally distributed. But what happens if not? Let us assume \(X \sim \mu + \sigma \cdot t_3 \), where \(t_3 \) is Student’s \(t \) distribution with three degrees of freedom. In such a case the variance of \(X \) is three times larger than under normality. Of course now \(\tilde{p} \) is not the best unbiased estimator and \(\hat{p} \) is not the maximum likelihood one.

What are their properties? How much worse are they? To answer these questions 5000 samples of size \(n = 10 \) and \(n = 50 \) were generated in the case \(p = 0.05 \). The Figures 7 and 8 present the histograms of \(\hat{p} \) and \(\tilde{p} \).
So, \(\hat{p} \) has got less mean square error and can be considered as better than \(\tilde{p} \) when the probability which is to be estimated is near 0.05.

LARGE SAMPLE SIZE

When sample size \(n \) is large enough, the estimate \(\tilde{p} \) can be used. Let us compare it with \(\hat{p} \). Let us assume we are interested in the probability of attaining the relative error not greater than a certain acceptable value \(\varepsilon \). That is let us compare the probabilities of attaining the relative error not greater than \(\varepsilon \) with the sampling distribution of \(\hat{p} \) and \(\tilde{p} \).
\[\Pr \left(\left\| \hat{p} - p \right\| \leq \varepsilon \right) \quad \text{and} \quad \Pr \left(\left\| \tilde{p} - p \right\| \leq \varepsilon \right) \]. Table 3 gives the results for \(n = 200, p = 0.05 \) and \(\varepsilon = 0.1, 0.2, 0.3 \).

\[\Pr \left(\left\| \hat{p} - p \right\| \leq \varepsilon \right) \] is calculated under assumption of normality using normal approximation to non-central \(t \) distribution ([15]). \(\Pr \left(\left\| \tilde{p} - p \right\| \leq \varepsilon \right) \) does not depend on the distribution of \(X \) and is calculated using binomial probability.

<table>
<thead>
<tr>
<th>(\varepsilon)</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Pr \left(\left| \hat{p} - p \right| \leq \varepsilon \right))</td>
<td>0.34</td>
<td>0.63</td>
<td>0.82</td>
</tr>
<tr>
<td>(\Pr \left(\left| \tilde{p} - p \right| \leq \varepsilon \right))</td>
<td>0.37</td>
<td>0.58</td>
<td>0.75</td>
</tr>
</tbody>
</table>

So, when sample size is large enough to use \(\tilde{p} \) just this estimator should be preferable as it is as good as \(\hat{p} \) under normality and, additionally, it is completely independent upon the distribution of \(X \).

REFERENCES