Design of Digester Biogas Tank

Part 4: The Stress Analysis Of Digester Biogas Tank

Karol Tucki, Marek Klimkiewicz, Remigiusz Mruk, Piotr Piątkowski

Department of Production Management and Engineering, Warsaw University of Life Sciences – SGGW

Received January 09.2015; accepted February 19.2015

Summary. This paper presents the application of Autodesk Inventor 2014 program for numerical simulation of stress distribution in a pressure vessel. The stress analysis was performed for a digester biogas tank. The distribution of loads and meshing were analyzed. The results of analysis were discussed.

Key words: biogas, stress analysis, finite element method.

INTRODUCTION

One of the ways to prevent the effects of global warming is the development of renewable energy sources. According to the data presented by PSE S.A. on 31 Jan 2013, the Polish renewable energy sources are responsible for 9.6% of all the energy produced in the country. One of possibilities for increasing the share of renewable energy could be the agricultural biogas. In practice, biogas is most frequently used in cogeneration when creating heat and electric energy. It is becoming more popular as a source of biomethane [7]. Valuable nutrients obtained in the process of fermentation may be re-used as substitutes for mineral fertilisers. This process results in the lowering of CO₂ emissions, allows for conserving fossil fuels and decreasing costs [10].

The process of biogas creation may utilize highly varied technologies [8, 12]. There is a wide spectrum of ways in which the components and technical equipment may be connected. The technical elements of a biogas installation are selected to match the substrates used to produce the gas. The size of individual generators and tank volumes depend on the quantity of the input material.

Modern agricultural biogas plants utilize different fermentation chambers. Their construction is mostly dependent on the utilized technology of biogas production.

Currently, the most prevalent material for production of such chambers is ferro-concrete. It is the material of choice in both Germany and Poland [2]. Its main advantage is the production cost [4].

Steel tanks, used in biogas plants as reactors for methane fermentation are usually of similar volumes as the ones made of ferro-concrete and are considered a good alternative as the latter type is prone to gas or substrate leaks and releasing of smells [4]. Steel fermentation chambers are usually placed on concrete foundations. The walls of a steel tank are made of sheet metal bands that are connected by welding or screws [2]. The types of steel used are stainless, acid-resistant, galvanized or enamelled. Stainless steel tanks are characterized by resistance to corrosion by hydrogen sulphide and ammonia. Fermentation chambers may also be created from non-alloy steel, however in such a case a plastic cover must be used to protect the walls of the tank against chemical corrosion. Such solution is cheap but requires diligence when creating seals, openings and when attaching the plastic to the walls of the tank [2]. The thickness of the sheet metal is usually lower than 5 mm [4]. A definitive advantage of a steel tank is that it starts its operation very quickly, as it can be easily heated after being filled with substrate [2]. With ferro-concrete tanks it is impossible to quickly heat the substrate as the contractor usually defines limits for the maximal increase of temperature within the tank [2]. A significant advantage is also the short construction period as finished components, such as sheet metal bands, are delivered to the construction site. Steel fermentation chambers are usually built from top to bottom (Fig. 1).

All screw joints are specially sealed. As with ferro-concrete chambers, in the steel tanks the roof may be created as a biogas tank using membranes [13]. The tank may be covered by a single membrane or two membranes. In a roof consisting of two membranes, the top membrane separates the biogas storage (internal membrane) from the weather conditions.
The roof of such chambers may also be made of steel but in such a case an additional spherical two-membrane biogas storage tank is built [13].

According to the Pascal’s law, a liquid exerts hydrostatic pressure on the tank that is dependent on the liquid column level and the specific weight of the liquid. Pressure distribution in a tank filled with liquid was presented in Figure 2 [3].

The average pressure value for a given ring (ts₁ – ts₆) was calculated taking into consideration hydrostatic pressure at different heights of the liquid-filled tank according to equation (1) and was given in Table 1.

\[p_h = qgh, \]

Table 1. Average hydrostatic pressure at levels of individual rings [own elaboration]

<table>
<thead>
<tr>
<th>Ring number</th>
<th>Level measured from the upper surface of the tank (h) [m]</th>
<th>Level measured from the liquid level (h) [m]</th>
<th>Liquid pressure (p_h = p_\text{lv}) [MPa]</th>
<th>Average pressure (p_\text{avg}) for a ring [MPa]</th>
</tr>
</thead>
<tbody>
<tr>
<td>ts6</td>
<td>4,64</td>
<td>-</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td>ts5</td>
<td>3,87</td>
<td>-</td>
<td>0,003</td>
<td>0,003</td>
</tr>
<tr>
<td>liquid level</td>
<td>3,71</td>
<td>0,00</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td>ts4</td>
<td>3,09</td>
<td>0,62</td>
<td>0,006</td>
<td>0,010</td>
</tr>
<tr>
<td></td>
<td>3,09</td>
<td>0,62</td>
<td>0,006</td>
<td>0,010</td>
</tr>
<tr>
<td>ts3</td>
<td>2,32</td>
<td>1,39</td>
<td>0,014</td>
<td>0,017</td>
</tr>
<tr>
<td></td>
<td>2,32</td>
<td>1,39</td>
<td>0,014</td>
<td>0,017</td>
</tr>
<tr>
<td>ts2</td>
<td>1,55</td>
<td>2,16</td>
<td>0,021</td>
<td>0,025</td>
</tr>
<tr>
<td></td>
<td>1,55</td>
<td>2,16</td>
<td>0,021</td>
<td>0,025</td>
</tr>
<tr>
<td>ts1</td>
<td>0,78</td>
<td>2,93</td>
<td>0,029</td>
<td>0,033</td>
</tr>
<tr>
<td></td>
<td>0,78</td>
<td>2,93</td>
<td>0,029</td>
<td>0,033</td>
</tr>
</tbody>
</table>

Fig. 1. Steel fermentation chamber [own elaboration]

Fig. 2. Hydrostatic pressure distribution in a liquid-filled tank [own elaboration]

where:
- \(p_h \) – hydrostatic pressure [MPa];
- \(q \) – liquid’s density [kg/m³], assumed \(q = 1000 \) [kg/m³];
- \(h \) – liquid column level equal to depth [m].

Average pressure distribution on a given ring is given in Figure 3.

Fig. 3. Distribution of average pressure on a ring [own elaboration]

The top surface of the rings was loaded with the weight of the construction elements [14, 16]. Table 2 presents the load distribution of own weight for individual shell rings.

In order to determine stresses in a ring caused by water pressure and load from other construction elements (due to their weight), the stress analysis module was applied.
DESIGN OF DIGESTER BIOGAS TANK

The analysed ring was ts1, which was produced from a welded band of sheet metal. The model omits the top bevelling and does not include holes for pipes used to remove the processed substrate from the tank [1, 9]. The upper edge of the ring is under force of about 26414 N, due to own weight of chamber’s elements above that ring and the average pressure at this level of the tank – 0.033 MPa. In order to perform stress analysis, the first step was selecting the material the construction element is made from [11, 15]. From the program’s material library the non-alloy steel was selected. The second step was to select the linkage between the model’s elements [5]. The ring was linked with two immobile links placed on its top and bottom base (Fig. 4).

Table 2. Load due to weight of elements, exerted on top edges of individual rings [own elaboration]

<table>
<thead>
<tr>
<th>Construction element</th>
<th>Thickness [mm]</th>
<th>Height [mm]</th>
<th>Internal diameter of the ring [mm]</th>
<th>Element’s volume [m³]</th>
<th>Element’s mass [kg]</th>
<th>Element’s weight [N]</th>
<th>Meridional force on construction element [N]</th>
</tr>
</thead>
<tbody>
<tr>
<td>ts6</td>
<td>5</td>
<td>772</td>
<td>9268</td>
<td>0.056</td>
<td>442</td>
<td>4332</td>
<td>2155</td>
</tr>
<tr>
<td>ts5</td>
<td>5</td>
<td>772</td>
<td>9268</td>
<td>0.056</td>
<td>442</td>
<td>4332</td>
<td>6486</td>
</tr>
<tr>
<td>ts4</td>
<td>6</td>
<td>772</td>
<td>9268</td>
<td>0.067</td>
<td>530</td>
<td>5199</td>
<td>10818</td>
</tr>
<tr>
<td>ts3</td>
<td>6</td>
<td>772</td>
<td>9268</td>
<td>0.067</td>
<td>530</td>
<td>5199</td>
<td>16017</td>
</tr>
<tr>
<td>ts2</td>
<td>6</td>
<td>772</td>
<td>9268</td>
<td>0.067</td>
<td>530</td>
<td>5199</td>
<td>21215</td>
</tr>
<tr>
<td>ts1</td>
<td>6</td>
<td>772</td>
<td>9268</td>
<td>0.067</td>
<td>530</td>
<td>5199</td>
<td>26414</td>
</tr>
<tr>
<td>ring holding down membranes</td>
<td>80</td>
<td>7</td>
<td>9290</td>
<td>0.008</td>
<td>64</td>
<td>633</td>
<td>not analyzed</td>
</tr>
<tr>
<td>top angle section</td>
<td>7</td>
<td>100</td>
<td>9278</td>
<td>0.020</td>
<td>155</td>
<td>1522</td>
<td>not analyzed</td>
</tr>
</tbody>
</table>

Next the loads were established: pressure 0.033 MPa (Fig. 5) exerted on the internal surface of the tank and the load of 26414 N (Fig. 6) exerted on the top edge of the ring.

The software was used to generate a mesh of 35591 finished elements, which covered the surface of the ring. The mesh was automatically concentrated on the weld of the ring (Fig. 7).

After the simulation was launched, the program generated results for, among others, reduced stresses (MPa), displacements (mm) and the safety factor. The results were available in the browser’s window under the branch entitled from the “Environment” tab of the Autodesk Inventor software.
“Results”. The results were displayed with “contour shadows” on that allows presentation of results without translations between colours. Figures 8, 9 and 10 present the areas characterized by maximal and minimal Von Mises stresses.

Maximal Von Mises stresses are marked in red (about 27.42 MPa). They are present in the area of the weld at both the top and bottom edge of the ring (Fig. 9).

Minimal Von Mises stresses were recorded at the middle of the top and bottom base of the ring and are 2.63 MPa (Fig. 10).

Next, the displacements were analysed in mm. The largest displacements were observed in the middle part of the ring (Fig. 11) and the smallest in the lower part of the ring’s wall (Fig. 12).

At the next stage the safety factor needed to be established, which is an absolute amount, resultant from the quotient of the Von Mises stress and the yield point of a given material. The safety factor should not be below 1.0 [6]. Below the results are presented of the safety factor for the tested ring (Fig. 13). These values are between 7.04 and 15ul.

Tools included in the Autodesk Inventor 2014 program allow for the designing of a steel fermentation chamber. On the basis of the realized stress analysis of ring ts1, it can be...
stated that the element will bear the stresses it is going to be subjected to. In order to optimize the construction costs it is possible to change the thickness of the element or consider changing the material. The calculations may be burdened with errors as the method of strength calculation is an approximation (division into finished elements of a certain size results in simplification of calculations). During the stress analysis using the Autodesk Inventor 2014 program it was established that the calculation options are limited and that there is no possibility to perform complex calculations, therefore the authors recommend using different calculation package (e.g. Anasys) in order to calculate the key elements of the installation, such as the fermentation chamber.

REFERENCES

1. **Chlebus E.**, **2000**: Techniki komputerowe CAx w inżynierii produkcji, WNT.
13. **Sydor M.**, **2009**: Wprowadzenie do CAD. Podstawy komputerowo wspomagane projektowania, PWN.

PROJEKTOWANIE ZBIORNIKA KOMORY BIOGAZOWEJ

CZ. 4.: ANALIZA STANU NAPRĘŻEŃ PIERŚCIEŃA ZBIORNIKA BIOGAZU

Słowa kluczowe: biogaz, obliczenia wytrzymałościowe, metoda elementów skończonych